Name:	School:	Target Grade:

SECONDARY 4 EM WA2
 MOCK EXAM PAPER

READ THESE INSTRUCTIONS FIRST
 INSTRUCTIONS TO CANDIDATES

1. Find a nice comfortable spot without distraction.
2. Be fully focused for the whole duration of the test.
3. Speed is KING. Finish the paper as soon as possible then return-back to Check Your Answers.
4. As you are checking your answers, always find ways to VALIDATE your answer.
5. Avoid looking through line by line as usually you will not be able to see your Blind Spot.
6. If there is no alternative method, cover your answer and REDO the question.
7. Give non-exact answers to 3 significant figures, or 1 decimal place for angles in degree, or 2 decimal place for $\$ \$ \$$, unless a different level of accuracy is specified in the question.

Wish you guys all the best in this test.
You can do it.
I believe in you.
Team Paradigm

If you are struggling in this paper, it's an indication to work harder! If you need support and personalised guidance, you can find us here www.mathtutor.com.sg

Name: \qquad

Secondary 4 Mathematics

 Mock PaperTopic: Vectors
Duration: 40 minutes

Date: \qquad

Vectors

1 ABCD is a parallelogram. $\overrightarrow{A B}=\binom{-1}{-5}$ and $\overrightarrow{B D}=\binom{4}{8}$.
The coordinates of D is $(6,2)$. Find
(a) the coordinates of B,
[1]
(b) $\overrightarrow{B C}$,
(c) the magnitude of $\overrightarrow{C D}$.

2 In the diagram, WXYZ is a quadrilateral such that $\overline{W X}=a, \overline{W Z}=b$ and $\overline{W Z}=$ $\frac{2}{3} \overline{X Y}$. T is a point on XZ such that $55 \overline{T X}=$ $3 \overline{Z X}$.
(a) What is the special name given to the quadrilateral $W X Y Z$?
(b) Express, as simply as possible, in terms of a and b ,

(i) $\overline{Z X}$,
(ii) $\overline{W Y}$,
(iii) $\overline{W T}$.
(c) Explain why points W, T and Y lie on a straight line.
(d) Find
(i) $\frac{\text { Area of triangle } W Z T}{\text { Area of triangle } Y X T}$,
(a) Given that $\overline{R S}=\binom{-1}{2}$ and the position vector of R is $\binom{3}{-5}$, find
(i) $|\overline{R S}|$,
(ii) the coordinates of S.
b)

ABCD is a parallelogram. $\overline{A F}=2 \overline{F D}, \overline{E D}=\frac{1}{3} \overline{C D}, \overline{B A}=a$ and $\overline{B C}=b$.
(i) Express, as simply as possible, in terms of a and/or b,
(a) $\overline{E C}$,
(b) $\overline{D F}$,
(c) $\overline{C A}$,
(d) Are $\overline{F E}$ and $\overline{C A}$ parallel vectors? Explain your answer with working.
(ii) Calculate the value of
(a) $\frac{\text { area of } \triangle D E F}{\text { area of } \triangle D C A}$,
(b) $\frac{\text { area of } \triangle D E F}{\text { area of parallelogram } A B C D}$.

Answer Key

1 Solutions:
(a) $\overline{B O}+\overline{O D}=\overline{B D}$
$\overline{O B}=\overline{O D}-\overline{B D}$
$=\binom{6}{2}-\binom{4}{8}$
$=\binom{2}{-6}$
$\therefore B(2,-6)$
(b) $\overline{B A}+\overline{B C}=\overline{B D}$
$\overline{B C}=\overline{B D}-\overline{B A}$
$=\binom{4}{8}-\binom{1}{5}$
$=\binom{3}{3}$
(c) $|\overline{C D}|=|\overline{A B}|$
$=\sqrt{(-1)^{2}+(-5)^{2}}$
$=\sqrt{26}$
$=5.09902$
$=5.10$
Ans: $(a)(2,-6) \quad$ (b) $\binom{3}{3} \quad$ (c) 5.10
Solutions:
(b)(i) $\overrightarrow{Z X}=\overrightarrow{Z W}+\overrightarrow{W X}=-\mathbf{b}+\mathbf{a}$

OR

$\overrightarrow{Z X}=\overrightarrow{W X}+\overrightarrow{W Z}=\mathbf{a}-\mathbf{b}$
(ii) $\overrightarrow{W Y}=\overrightarrow{W X}+\overrightarrow{X Y}=\mathbf{a}+\frac{3}{2} \mathbf{b}$
(iii) $5 \overrightarrow{T X}=3 \overrightarrow{Z X}$
$\overrightarrow{T X}=\frac{3}{5} \overrightarrow{Z X}$
$\overrightarrow{Z T}=\frac{2}{5} \overrightarrow{Z X}$
$\overrightarrow{W T}=\overrightarrow{W Z}+\overrightarrow{Z T}=\overrightarrow{W Z}+\frac{2}{5} \overrightarrow{Z X}=\mathbf{b}+\frac{2}{5}(\mathbf{a} \quad \mathbf{b})$
$\overrightarrow{W T}=\frac{2}{5} \mathbf{a}+\frac{3}{5} \mathbf{b} \quad$ or $\quad(2 \mathbf{a}+3 \mathbf{b}) \quad$ or $\frac{2}{5}\left(\mathbf{a}+\frac{3}{2} \mathbf{b}\right)$
OR

$$
\begin{aligned}
& \overrightarrow{W T}=\overrightarrow{W X}+\overrightarrow{X T} \\
& \overrightarrow{W T}=\overrightarrow{W X}+\frac{3}{5}(\overrightarrow{Z X}) \\
& \overrightarrow{W T}=\frac{2}{5} \mathbf{a}+\frac{3}{5} \mathbf{b} \quad \text { OR } \quad \frac{1}{5}(2 \mathbf{a}+3 \mathbf{b}) \quad \text { OR } \quad \frac{2}{5}\left(\mathbf{a}+\frac{3}{2} \mathbf{b}\right)
\end{aligned}
$$

(c) $\overrightarrow{W Y}=\mathbf{a}-\frac{3}{2} \mathbf{b}=\frac{1}{2}(2 \mathbf{a}+3 \mathbf{b})$
$\overrightarrow{W T}=\frac{2}{5} \mathbf{a}+\frac{3}{5} \mathbf{b}=\frac{1}{5}(2 \mathbf{a}+2 \mathbf{b})$
$\frac{W T}{W Y}=\frac{(1 / 5)}{(1 / 2)}=\frac{2}{5}$
$\overrightarrow{W T}=\frac{2}{5} \overrightarrow{W Y}$
$\overrightarrow{W T}$ and $\overrightarrow{W Y}$ are parallel. W is a common point.
Hence W, T and Y lie on a straight line

Answer: (a) Trapezium (bi) $\overrightarrow{Z X}=\overrightarrow{W X}-\overrightarrow{W Z}=a-b$ (bii) $a+\frac{3}{2} b$
(biii) $\frac{2}{5}\left(a+\frac{3}{2} b\right)$ (c) $\overrightarrow{W T}$ and $\overrightarrow{W Y}$ are parallel. W is a common point.
Hence W, T and Y lie on a straight line. (di) $\frac{\text { Area of triangle WZT }}{\text { Area of triangle YXT }}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$
(dii) $\frac{\text { Area of triangle YZT }}{\text { Area of triangle } \mathrm{YXT}}=\frac{\left(\frac{1}{2} \times Z T \times h\right)}{\left(\frac{1}{2} \times X T \times h\right)}=\frac{2}{3}$

3 Solutions:
(a)(i) $|\overrightarrow{R S}|$,

$$
|\overrightarrow{R S}|=\sqrt{(-1)^{2}+2^{2}}=2.24 \text { units (3s.f.) }
$$

(ii) the coordinates of S.

$$
\begin{aligned}
& \overrightarrow{O S}=\overrightarrow{O R}+\overrightarrow{R S} \\
& \overrightarrow{O S}=\binom{3}{-5}+\binom{-1}{2} \\
& \overrightarrow{O S}=\binom{2}{-3}
\end{aligned}
$$

Hence coordinates of S is $(2,3)$.
(b)(i)(c) $\overline{C A}=\overline{C D}+\overline{D A}$
$\overline{C A}=\mathbf{a}-\mathbf{b}$
(i)(d) $\overline{F E}=\overline{E D}+\overline{D E}$

$$
\begin{aligned}
& \overline{F E}=\frac{1}{3} \mathbf{b}-\frac{1}{3} \mathbf{a} \\
& \overline{F E}=\frac{1}{3}(\mathbf{a}-\mathbf{b}) \\
& \overline{F E}=\frac{1}{3} \overline{C A}
\end{aligned}
$$

Hence, they are parallel vectors

Ans: (a)(i) 2.24 units (ii) Hence coordinate of S is $(2,-3)$
(b)(i-a) $\overline{E C}=-\frac{2}{3} a \quad$ (b)(i-b) $\overline{D F}=-\frac{1}{3} b$ (b)(i-c) $\overline{C A}=a-b$
(b)(i-d) $\overline{F E}=-\frac{1}{3} C A$ Hence, they are parallel vectors.
(b)(ii-a) $\frac{\text { Area of } \triangle \mathrm{DEF}}{\text { Area of } \triangle \mathrm{DCA}}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
(b)(ii-b) $\frac{\text { Area of } \triangle D E F}{\text { Area of } A B C D}=\frac{1}{9 x 2}=\frac{1}{18}$

