Name:	School:	Target Grade:

SECONDARY 4 E Math WA1 MOCK EXAM PAPER (Arc and Circle)

READ THESE INSTRUCTIONS FIRST
 INSTRUCTIONS TO CANDIDATES

1. Find a nice comfortable spot without distraction.
2. Be fully focused for the whole duration of the test.
3. Speed is KING. Finish the paper as soon as possible then return-back to Check Your Answers.
4. As you are checking your answers, always find ways to VALIDATE your answer.
5. Avoid looking through line by line as usually you will not be able to see your Blind Spot.
6. If there is no alternative method, cover your answer and REDO the question.
7. Give non-exact answers to 3 significant figures, or 1 decimal place for angles in degree, or 2 decimal place for $\$ \$ \$$, unless a different level of accuracy is specified in the question.

Wish you guys all the best in this test.
You can do it.

I believe in you.
Team Paradigm

If you are struggling in this paper, it's an indication to work harder! If you need support and personalised guidance, you can find us here www.mathtutor.com.sg

Name: \qquad Class: \qquad Date: \qquad

Secondary 4 E Mathematics WA1 Mock Paper

Topic: Arc Sector Segment and Circles
Duration: 45 minutes

Arc Sector Segment

1 AMBC is a major segment of a circle, centre O and diameter $90 \mathrm{~cm} . C M=65 \mathrm{~cm}$.
Angle $A M C=90^{\circ}$. Find the area of the segment.

2 The diagram shows a paper cup in s shape of a cone with radius 2.8 cm and vertical height 4.5 cm .
(a) Show that the curved surface area is $14.84 \pi \mathrm{~cm}^{2}$.
(b)The paper cup is cut open to form a
 sector of a circle with angle θ radians. Find angle θ

3 In the diagram, $O A R B$ is a sector of a circle with centre O, radius 12 cm and angle $A O B=1.2$ radians. C is the centre of the circle enclosed inside the sector, $O C R$ is a straight line and the circle touches the sector at P, Q and R.

(i)Show that the radius of the enclosed circle is 4.3305 cm , correct to 4 decimal places.
(ii)Calculate the perimeter of the shaded region $P O Q$.

Circles

Answer Key

Arc Sector Segment

1 Given that midpoint of $A B$ is M.
$A O=B O=$ radius $=\frac{90}{2}=45 \mathrm{~cm}$,
$O M=65-45=20 \mathrm{~cm}$
$\cos \frac{1}{2} \angle A O B=\frac{20}{45}$
$\angle A O B=2 \cos ^{-1} \frac{20}{45}$
$\angle A O B=127.2244001^{\circ}=127.2^{\circ}$ (1d.p.)
Area of triangle AOB
$=\frac{1}{2}\left(45^{2}\right)\left(\sin 127.2244001^{\circ}\right)$
$=806.2257746 \mathrm{~cm}^{2}$
Area of sector $A C B$
$=\left(\frac{360^{\circ}-127.2244001^{\circ}}{360^{\circ}}\right)(\pi)\left(45^{2}\right)$
$=4113.48435 \mathrm{~cm}^{2}$
Area of major segment $A M B C=$ Area of triangle $A O B+$ Area of sector $A C B$
$=806.2257746+4113.48435=4919.710125$
$=4920 \mathrm{~cm}^{2}$ (3 s.f.)
Ans: $4920 \mathrm{~cm}^{2}$ (3s.f)
2 (a) To find slant height (using Pythagoras' Theorem)

$$
\begin{aligned}
& l^{2}=2.8^{2}+4.5^{2} \\
& l=5.3 \\
& \text { Curved surface area }=\pi r l \\
& =\pi \times 2.8 \times 5.3 \\
& =14.84 \pi \mathrm{~cm}^{2}(\text { Shown })
\end{aligned}
$$

(b) Area Sector $=$ Area Curved Surface Cone

$$
\begin{gathered}
\frac{1}{2} r^{2} \theta=14.84 \pi \\
\frac{1}{2}(5.3)^{2} \theta=14.84 \pi \\
\theta=\frac{14.84 \pi}{\frac{1}{2}(5.3)^{2}}
\end{gathered}
$$

$$
\theta=3.32 \mathrm{rad}
$$

Ans: (b) $\theta=3.32 \mathrm{rad}$

3 Ans:
(i) Let r be the radius of the enclosed circle.

In $\triangle C O P$,

$$
\begin{aligned}
& \sin 0.6=\frac{C P}{O C} \\
&=\frac{r}{12-r} \\
& \sin 0.6(12-r)=r \\
& r \sin 0.6+r=12 \sin 0.6 \\
& r=\frac{12 \sin 0.6}{\sin 0.6+1} \\
& \therefore r=4.3305 \mathrm{~cm}(4 \mathrm{dp})(\text { shown }) \\
& \text { (ii) } \angle P C Q=2 \pi-\frac{\pi}{2}-\frac{\pi}{2}-1.2=\pi-1.2=1.9415 \mathrm{rad} \\
& \text { In } \triangle C O P, \tan 0.6=\frac{4.3305}{O P} \\
& O P=6.3298 \mathrm{~cm}=O Q
\end{aligned}
$$

Perimeter of shaded region $=2(6.3298)+(4.3305)(1.9415)$

$$
\begin{aligned}
& =21.0672 \\
& \approx 21.1 \mathrm{~cm}(3 \mathrm{sf})
\end{aligned}
$$

Circles

(a)(i) $\angle C D B=\angle C A B=58^{\circ}(\angle s$ in the same segment $)$ $\angle B D E=180^{\circ}-58^{\circ}=122^{\circ}$
(ii) Reflex $\angle B O E=122^{\circ} \times 2=244^{\circ}(\angle s$ at centre $=2 \angle$ at circumference $)$

Obtuse $\angle B O E=360^{\circ}-244^{\circ}=116^{\circ}$
(iii) $\angle E B O=\frac{180^{\circ}-116^{\circ}}{32^{\circ}}=32^{\circ}$
(iv) $\angle A B O=90^{\circ}$ (radius \perp tangent)

$$
\angle A B E=90^{\circ}-32^{\circ}=58^{\circ}
$$

Ans: (a)(i) 122°, (a)(ii) 116 ,(a)(iii) 32°, (a)(iv) 58°
2 (a) $\angle D B C=90^{\circ}-58^{\circ}=32^{\circ}(\angle s$ in a semicircle $)$
(b) $\angle A E D=180^{\circ}-58^{\circ}=122^{\circ}(\angle S$ in opp. segment)
(c) $\angle A D F=130^{\circ}(\angle s$ in the same segment) $\angle A D F=180^{\circ}-30^{\circ}-122^{\circ}=28^{\circ}($ int $\angle s, A E / / D F)$

Ans: (a) $\angle D B C=32^{\circ}$ (b) $\angle A E D=122^{\circ}$ (c) $\angle A D F=28^{\circ}$
3 (a) $\angle F A B=180^{\circ}-50^{\circ}-42^{\circ}=88^{\circ}$ (Angle sum of triangle)
$\angle F D C=88^{\circ}$ (Angles in the same segment)
(b) $\angle A E D=180^{\circ}-50^{\circ}=130^{\circ}$ (Opp. Angles of cyclic quad.)
$\angle C D E=180^{\circ}-66^{\circ}=114^{\circ}$ (Opp. Angles of cyclic quad.) OR
$\angle A E D=360^{\circ}-114^{\circ}-66^{\circ}-50^{\circ}=130^{\circ}$ (\angle sum of quad.)
(c) $\angle E D C=180^{\circ}-66^{\circ}=114^{\circ}$ (Opp. Angles of cyclic quad.) $\angle E D F=114^{\circ}-88^{\circ}=26^{\circ} \quad$ OR $\angle E D C=180^{\circ}-\angle E A B$ (Opp. Angles of cyclic quad)

$$
=180^{\circ}-66^{\circ}-88^{\circ}=26^{\circ}
$$

Ans: (a) $\angle F D C=88^{\circ}$ (b) $\angle A E D=130^{\circ}$ (c) $\angle E D F=26^{\circ}$

