5 MUST KNOW QUESTIONS TO CONQUER VECTORS

1 The position vector of P, relative to O, is $\binom{2}{1}$ and the coordinates of Q are $(-4,3)$.
(a) Calculate $|\overrightarrow{\mathrm{PQ}}|$.
(b) Given that X is the mid-point of PQ , express $\overrightarrow{\mathrm{OX}}$ as a column vector.
(c) Find the coordinates of R such that $\overrightarrow{O R}=3 \overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}}$.
(d) Z is the point OQ produced such that $\overrightarrow{\mathrm{OZ}}=20$ units. Express $\overrightarrow{\mathrm{OZ}}$ as a column vector.
Ans: (a) $\sqrt{40}$ units or $2 \sqrt{10}$ units
(b) $\binom{-1}{2}$
(c) $(2,6)$
(d) $\binom{-16}{12}$

2 The points A, B and C are marked on the grid.

(a) Given that $\overrightarrow{O A}=\left(\frac{2}{7}\right)$, locate the origin O and state the coordinated of B.
(b) Find the vector $\overrightarrow{A C}$.
(c) If $\overrightarrow{A C}=3 \overrightarrow{A D}$ and $A B E D$ is a parallelogram, mark and label clearly, in the grid, the points D and E.

Ans:
(a) $B(7,-1)$
(b) $\binom{9}{-6}$

3	$A B C D$ is a parallelogram. E is a point on $D C$ such that $D E=\frac{2}{3} E C$. The lines $A D$ and $B E$ when produced, meet at F. Given that $\overrightarrow{A B}=\binom{10}{0}$ and $\overrightarrow{A D}=\binom{-3}{5}$. (a) Express each of the following as a column vector. (i) $\overrightarrow{C E}$, (ii) $\overrightarrow{F E}$. (b) Find the value of $\frac{\text { area of } \triangle A B F}{\text { area of parallelogram } A B C D}$ Ans: (a) (i) $\binom{-6}{0}$ (ii) $\binom{6}{-3 \frac{1}{3}}$ (b) $\frac{5}{6}$
4	In $\triangle O R S$, the point A on $O R$ is such that $O A=2 A R . B$ is the midpoint of $O S, X$ is the midpoint of $A B$. In the diagram, $\overrightarrow{O A}=2 \mathrm{p}, \overrightarrow{O B}=2 \mathrm{q}$ and $S Y=\frac{4}{3} Y R$. (a) Express as simply as possible, in terms of p and q . (i) $\overrightarrow{A X}$, (ii) $\overrightarrow{O X}$, (iii) $\overrightarrow{R S}$, (iv) $\overrightarrow{O Y}$. What do the results in (ii) and (iv) tell you about O, X and Y ? (b) Find the numerical value of (i) $\frac{\text { Area of } \triangle O A X}{\text { Area of } \triangle O A Y}$, (ii) $\frac{\text { Area of } \triangle O A X}{\text { Area of } \triangle O R S}$, Ans: (a)(i) $\mathbf{q}-\mathbf{p}$ (ii) $\mathbf{p}+\mathbf{q}$ (iii) $4 \mathbf{q}-3 \mathbf{p}$ (iv) $\frac{12}{7}(\mathbf{p}+\mathbf{q})$ $\overrightarrow{O Y}=\frac{12}{7} \overrightarrow{O X} ; O, X$ and Y are collinear. (b)(i) $\frac{7}{12}$ (ii) $\frac{1}{6}$

5 In the diagram $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$. R lies on AB such that $\mathrm{AR}: \mathrm{RB}=3: 2$.
Q lies on OB produced such that $\mathrm{BQ}=2 \mathrm{OB} \cdot \overrightarrow{Q P}=2 \overrightarrow{O A}$.
(i) Express, as simply as possible, in terms of \mathbf{a} and/or \mathbf{b},
(a) $\overrightarrow{O R}$,
(b) $\overrightarrow{O P}$.
(ii) Make two statements about the points O, R and
(iii) Find
(a) $\frac{\text { Area of } \triangle O A R}{\text { Area of } \triangle O A B}$,
(b) $\frac{\text { Area of } \triangle O A R}{\text { Area of } \triangle A R P}$,
(c) $\frac{\text { Area of } \triangle O A P}{\text { Area of } \triangle O Q P}$,

(d) $\frac{\text { Area of } \triangle O A P}{\text { Area of } \triangle B R P Q}$,

Ans: (i)(a) $\frac{2}{5} \mathbf{a}+\frac{3}{5} \mathbf{b}$ (ii) O, R and P are collinear points, magnitude of $O R=\frac{1}{5} O P$
(iii)(a) $\frac{3}{5}$
(b) $\frac{1}{4}$
(c) $\frac{1}{2}$
(d) $\frac{15}{28}$

