MUST KNOW QUESTIONS TO <u>CONQUER</u> TRIGONOMETRY

Simplifying Trigonometry

1	Without using a calculator,
	(i) show that $\sin 105^{\circ} = \frac{1+\sqrt{3}}{2\sqrt{2}}$,
	(ii) hence, express $1 + \cot^2 105^\circ$ in the form $a + b\sqrt{3}$, where a and b are integers.
	Ans: (i) $\frac{1+\sqrt{3}}{2\sqrt{2}}$ (ii) $8 - 4\sqrt{3}$
2	(a) State the values between which each of the following must lie:
	(i) the principal value of $\tan^{-1} x$,
	(ii) the principal value of $\cos^{-1} x$.
	(b) Without using a calculator, find the exact value of tan 105°.
	Answers:
	(a)(i) $-90^{\circ} < \tan^{-1} x < 90^{\circ}$ (ii) $0^{\circ} \le \cos^{-1} \le 180^{\circ}$ (b) $\tan 105^{\circ} = -\sqrt{3} - 2$
3	Two acute angles, A and B are such that $\cot A = 7$ and $\tan(A - B) = -1$.
	Without evaluating A and B,
	(i) show that $\tan B = \frac{4}{3}$,
	(ii) evaluate $\sin A$ and $\cos B$,
	(iii) evaluate $\sin^2 2A + \cos^2 2B$.
	Ans: (ii) $\sin A = \frac{1}{\sqrt{50}}$, $\cos B = \frac{3}{5}$ (iii) $\frac{98}{625}$

Trigonometry (Quadrants)

1	Given that $\sin A = -p$ and $\cos B = -q$, where A and B are in the same quadrant and p and q are positive constants, find the value of
	(i) $sin(-A)$, (ii) $tan(45^{\circ} - A)$, (iii) $sec(2B)$.
	Ans: (i) $\sin(-A) = p$ (ii) $\tan(45^{\circ} - A) = \frac{\sqrt{1-p^2}-p}{\sqrt{1-p^2}+p}$ (iii) $\sec(2B) = \frac{1}{2q^2-1}$
2	Given that $\sin \theta = p$ where θ is an acute angle measured in degrees, obtain an expression, in terms of p , for (i) $\tan \theta$, (ii) $\sin(90^\circ - \theta)$.
	Ans: (i) $\tan \theta = \frac{p}{\sqrt{1-p^2}}$ (ii) $\cos \theta = \sqrt{1-p^2}$
3	Given that θ is obtuse and $\tan \theta = a$, express, in terms of a , (i) $\cos \theta$ (ii) $\csc \theta$.
	Ans: (i) $\cos \theta = -\frac{1}{\sqrt{1+a^2}}$ (ii) $\operatorname{cosec} \theta = -\frac{\sqrt{1+a^2}}{a}$
4	It is given that $\cos A = -m$, where $m > 0$, and that A is obtuse.
	Find the value of each of the following in terms of m. (i) $\tan A$
	(i) $\cot(180 - A)$
	(iii) $\cos\left(\frac{A}{2}\right)$
	Ans: (i) $\frac{-\sqrt{1-m^2}}{m}$ (ii) $\frac{m}{\sqrt{1-m^2}}$ (iii) $\frac{\sqrt{1-m}}{2}$

Trigonometry Graph

Solving Trigonometry

1	Solve the equation $6 \sin^2 x + 5 \cos x = 5$ for $0^\circ < x < 360^\circ$.
	Ans: $x = 99.6^{\circ}$, 260.4°
2	Solve $\cos(2y - 80^\circ) = \sin 42^\circ$ for $-180^\circ \le y \le 180^\circ$
	Ans: $y = 64^{\circ}, 16^{\circ}, -116^{\circ}, -164^{\circ}$
3	Solve $tan\theta = tan(-2)$ for $0 < \theta < 2\pi$.
	Ans: 2 rad, 5.14 rad
4	Solve the equation $2 \cot^2 y = \csc y + 1$ for $0^\circ \le y \le 360^\circ$.
	Ans: $y = 41.8^{\circ}$, 138.2°, 270°
5	(i) Show that $\frac{\tan^2 x - 1}{\tan^2 x + 1} = 1 - 2\cos^2 x$.
	(ii) Hence find, for $0 \le x \le 5$, the values of x in radians for which $\frac{\tan^2 x - 1}{\tan^2 x + 1} = \frac{1}{2}$.
	Ans: (i) shown (ii) $x = \frac{\pi}{2}, \frac{2\pi}{2}, \frac{4\pi}{3}$

Proving Trigonometry

1	Prove $(\sec x - \tan x)(\csc x + 1) = \cot x$
2	Prove $(\sin A + \cos A)(\sec A + \csc A) = 2 + \sec A \csc A$
3	Prove $\frac{\sec^2 \theta + 2\tan \theta}{(\cos \theta + \sin \theta)^2} = \sec^2 \theta$
4	$\operatorname{Prove} \frac{\sin A + \sin 2A}{1 + \cos A + \cos 2A} = \tan A$
5	Prove $\frac{1-\cos 2x+\sin x}{\sin 2x+\cos x} = \tan x$

🕽 🗲 Paradigm

R Formula

-	
1	Express $9\cos\theta + 12\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R is positive and $0^{\circ} < \alpha < 90^{\circ}$.
	Hence, solve the equation $9\cos\theta + 12\sin\theta = 11$ for $0^\circ \le \theta \le 360^\circ$.
	Ans: (i) $15 \cos(\theta - 53.1^{\circ})$ (ii) $\theta = 10.3^{\circ}, 96.0^{\circ}$ (1dp)
2	(i) Express $12 \sin \theta \cos \theta - 8 \cos^2 \theta + 7$ in the form $A \sin 2\theta + B \cos 2\theta + C$, where <i>A</i> , <i>B</i> and <i>C</i> ate constants.
	(ii) Solve $12 \sin \theta \cos \theta - 8 \cos^2 \theta + 7 = 0$ for $0^2 < \theta < 180^2$.
	Ans: (i) $6\sin 2\theta - 4\cos 2\theta + 3$ (ii) $\theta = 4.6^{\circ}, \theta = 119.1^{\circ}$
3	The figure shows a stage prop <i>ABC</i> used by a member of the theatre, leaning against a vertical wall <i>OP</i> . It is given that $AB = 30$ cm, $BC = 100$ cm, $\angle ABC = \angle AOC = 90^\circ$ and $\angle BCO = \theta$.
	P
	B 30 cm A
	100 cm
	χθ Γ
	(1) Show that $UL = (100 \cos \theta + 30 \sin \theta) \text{ cm}$. Let D be foot of B on UC let E be foot of A on BD
	(ii) Express <i>QC</i> in terms of $R \cos(\theta - \alpha)$ where <i>R</i> is a positive constant and α is an
	acute angle.
	(iii) State the maximum value of OC and the corresponding value of θ .
	(iv) Find the value of θ for which $OC = 80$ cm.
	Ans: (i) shown (ii) : $OC = 10\sqrt{100} \cos(\theta - 16.7^{\circ})$
	(i) shown (i) $OC = 10\sqrt{109} COS(0 - 10.7)$ (iii) $\Omega C_{max} = 10\sqrt{109}$, $\theta = 16.7^{\circ}$ (iv) $\theta = 56.7^{\circ}$