MUST KNOW QUESTIONS TO CONQUER TRIGONOMETRY

Simplifying Trigonometry

1 Without using a calculator,
(i) show that $\sin 105^{\circ}=\frac{1+\sqrt{3}}{2 \sqrt{2}}$,
(ii) hence, express $1+\cot ^{2} 105^{\circ}$ in the form $a+b \sqrt{3}$, where a and b are integers.

Ans: (i) $\frac{1+\sqrt{3}}{2 \sqrt{2}}$ (ii) $8-4 \sqrt{3}$
2 (a) State the values between which each of the following must lie:
(i) the principal value of $\tan ^{-1} x$,
(ii) the principal value of $\cos ^{-1} x$.
(b) Without using a calculator, find the exact value of $\tan 105^{\circ}$.

Answers:
(a)(i) $-90^{\circ}<\tan ^{-1} x<90^{\circ}$ (ii) $0^{\circ} \leq \cos ^{-1} \leq 180^{\circ}$ (b) $\tan 105^{\circ}=-\sqrt{3}-2$

3 Two acute angles, A and B are such that $\cot A=7$ and $\tan (A-B)=-1$.
Without evaluating A and B,
(i) show that $\tan B=\frac{4}{3}$,
(ii) evaluate $\sin A$ and $\cos B$,
(iii) evaluate $\sin ^{2} 2 A+\cos ^{2} 2 B$.

Ans: (ii) $\sin A=\frac{1}{\sqrt{50}}, \cos B=\frac{3}{5}$ (iii) $\frac{98}{625}$

Trigonometry (Quadrants)

1 Given that $\sin A=-p$ and $\cos B=-q$, where A and B are in the same quadrant and p and q are positive constants, find the value of
(i) $\sin (-A)$,
(ii) $\tan \left(45^{\circ}-A\right)$,
(iii) $\sec (2 B)$.

Ans: (i) $\sin (-A)=p$ (ii) $\tan \left(45^{\circ}-A\right)=\frac{\sqrt{1-p^{2}}-p}{\sqrt{1-p^{2}}+p} \quad$ (iii) $\sec (2 B)=\frac{1}{2 q^{2}-1}$
2 Given that $\sin \theta=p$ where θ is an acute angle measured in degrees, obtain an expression, in terms of p, for
(i) $\tan \theta$,
(ii) $\sin \left(90^{\circ}-\theta\right)$.

Ans: (i) $\tan \theta=\frac{p}{\sqrt{1-p^{2}}} \quad$ (ii) $\cos \theta=\sqrt{1-p^{2}}$
3 Given that θ is obtuse andtan $\theta=a$, express, in terms of a,
(i) $\cos \theta$
(ii) $\operatorname{cosec} \theta$.

Ans: (i) $\cos \theta=-\frac{1}{\sqrt{1+a^{2}}}$ (ii) $\operatorname{cosec} \theta=-\frac{\sqrt{1+a^{2}}}{a}$
4 It is given that $\cos A=-m$, where $m>0$, and that A is obtuse.
Find the value of each of the following in terms of m .
(i) $\tan A$
(ii) $\cot (180-A)$
(iii) $\cos \left(\frac{A}{2}\right)$

Ans: (i) $\frac{-\sqrt{1-m^{2}}}{m}$ (ii) $\frac{m}{\sqrt{1-m^{2}}}$ (iii) $\frac{\sqrt{1-m}}{2}$

Trigonometry Graph

1 Given that $y=a+b \cos 4 x$, where a and b are integers, and x is in radians,
(i) state the period of y.

Given that the maximum and minimum values of y are 3 and -5 respectively, find
(ii) the amplitude of y,
(iii) the value of a and of b.

Answers:
(i) $\frac{\pi}{2}$
(ii) amplitude $=4$
(iii) $b=4 \quad a=-1$

2 The function f is given by $\mathrm{f}(x)=-3 \sin \frac{x}{2}+2$.
(i) State the amplitude and period of f .
(ii) Sketch the graph of $y=\mathrm{f}(x)$ for $0 \leq x \leq 4 \pi$. By drawing a suitable straight line on the same axes, state the number of solutions to the equation $4 \pi-x-$ $6 \pi \sin \frac{x}{2}=0$ for $0 \leq x \leq 4 \pi$.
Answers:
(i) Amplitude $=3$, Period $=4 \pi$
(ii) 3 solutions

3 An object is connected to the wall with a spring that has a original horizontal length of 20 cm . The object is pulled back 8 cm past the original length and released. The object completed 4 cycles per second.

x
(i) Given that the function $x=8 \cos (a \pi t)+b$, where x is the horizontal distance, in centimetres, of the object from the wall and t is the time in seconds after releasing the object, find the values of a and b.
(ii) Find the duration of time for each cycle such that the object is more than 27 cm from the wall.

Ans: (i) $a=8, b=20$ (ii) 0.0402

Solving Trigonometry

1 Solve the equation $6 \sin ^{2} x+5 \cos x=5$ for $0^{\circ}<x<360^{\circ}$.
Ans: $x=99.6^{\circ}, 260.4^{\circ}$
2 Solve $\cos \left(2 y-80^{\circ}\right)=\sin 42^{\circ}$ for $-180^{\circ} \leq y \leq 180^{\circ}$
Ans: $y=64^{\circ}, 16^{\circ},-116^{\circ},-164^{\circ}$
3 Solve $\tan \theta=\tan (-2)$ for $0<\theta<2 \pi$.
Ans: 2 rad, 5.14 rad
4 Solve the equation $2 \cot ^{2} y=\operatorname{cosec} y+1$ for $0^{\circ} \leq y \leq 360^{\circ}$.
Ans: $y=41.8^{\circ}, 138.2^{\circ}, 270^{\circ}$
5 (i) Show that $\frac{\tan ^{2} x-1}{\tan ^{2} x+1}=1-2 \cos ^{2} x$.
(ii) Hence find, for $0 \leq x \leq 5$, the values of x in radians for which $\frac{\tan ^{2} x-1}{\tan ^{2} x+1}=\frac{1}{2}$.

Ans: (i) shown (ii) $x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}$

Proving Trigonometry

1	Prove $(\sec x-\tan x)(\operatorname{cosec} x+1)=\cot x$
2	Prove $(\sin A+\cos A)(\sec A+\operatorname{cosec} A)=2+\sec A \operatorname{cosec} A$
3	Prove $\frac{\sec ^{2} \theta+2 \tan \theta}{(\cos \theta+\sin \theta)^{2}}=\sec ^{2} \theta$
4	Prove $\frac{\sin A+\sin 2 A}{1+\cos A+\cos 2 A}=\tan A$
5	Prove $\frac{1-\cos 2 x+\sin x}{\sin 2 x+\cos x}=\tan x$

R Formula

1 Express $9 \cos \theta+12 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where R is positive and $0^{\circ}<\alpha<90^{\circ}$.
Hence, solve the equation $9 \cos \theta+12 \sin \theta=11$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
Ans: (i) $15 \cos \left(\theta-53.1^{\circ}\right)$ (ii) $\theta=10.3^{\circ}, 96.0^{\circ}$ (1dp)
2 (i) Express $12 \sin \theta \cos \theta-8 \cos ^{2} \theta+7$ in the form $A \sin 2 \theta+B \cos 2 \theta+C$, where A, B and C ate constants.
(ii) Solve $12 \sin \theta \cos \theta-8 \cos ^{2} \theta+7=0$ for $0^{\circ}<\theta<180^{\circ}$.

Ans: (i) $6 \sin 2 \theta-4 \cos 2 \theta+3$ (ii) $\theta=4.6^{\circ}, \theta=119.1^{\circ}$
3 The figure shows a stage prop $A B C$ used by a member of the theatre, leaning against a vertical wall $O P$. It is given that $A B=30 \mathrm{~cm}, B C=100 \mathrm{~cm}, \angle A B C=\angle A O C=90^{\circ}$ and $\angle B C O=\theta$.

(i) Show that $O C=(100 \cos \theta+30 \sin \theta) \mathrm{cm}$.

Let D be foot of B on $O C$, let E be foot of A on $B D$.
(ii) Express $O C$ in terms of $R \cos (\theta-\alpha)$, where R is a positive constant and α is an acute angle.
(iii) State the maximum value of OC and the corresponding value of θ.
(iv) Find the value of θ for which $O C=80 \mathrm{~cm}$.

Ans:
(i) shown (ii) $\therefore O C=10 \sqrt{109} \cos \left(\theta-16.7^{\circ}\right)$
(iii) $O C_{\max }=10 \sqrt{109}, \theta=16.7^{\circ}$ (iv) $\theta=56.7^{\circ}$

