

7 MUST KNOW QUESTIONS TO CONQUER **SURDS**

Without using a calculator, find the value of a and of b, for which $\frac{24}{\sqrt{3}(\sqrt{6}+\sqrt{12})}$ can be expressed as $a - \sqrt{b}$.

Ans: a = 8, b = 32

Ans: a = 8, b = 32Without using a calculator, find the exact value of x if $\sqrt{3} - x = \frac{\sqrt{48+5x}}{\sqrt{12}}$.

The area of triangle is $\left(1 + \frac{5\sqrt{5}}{2}\right)cm^2$. If the length of the base of the triangle is $(3 + 2\sqrt{5})$ cm, find without using a calculator, the height of the triangle in the form of $(a + b\sqrt{5})$ cm, where a and b are integers.

Ans: $4 - \sqrt{5}$ Given that $x = \sqrt{2} - \sqrt{3}$, find without using the calculator, the value of $x^2 - \frac{1}{x^2}$.

Ans: $-4\sqrt{6}$

Without using a calculator, find the value of p and of q such that $\sqrt{\frac{1}{p+q\sqrt{5}}} = \frac{2-\sqrt{5}}{3-2\sqrt{5}}$.

Ans: p = 21, q = 86 Express $\frac{3}{2-\sqrt{3}} - (2-\sqrt{3})^2$ in the form $m + n\sqrt{3}$, where m and n are integers to be found.

Ans: $-1 + 7\sqrt{3}$ 7 Find the values of the integers a and b such that $\frac{\sqrt{a+b}}{11}$ is the solution of the equation $x\sqrt{24} = x\sqrt{2} + \sqrt{6}.$

Ans: a = 3, b = 6

Page 1 Maths Secrets