7 MUST KNOW QUESTIONS TO CONQUER SURDS

1	Without using a calculator, find the value of a and of b, for which $\frac{24}{\sqrt{3}(\sqrt{6}+\sqrt{12})}$ can be expressed as $a-\sqrt{b}$. Ans: $a=8, b=32$
2	Without using a calculator, find the exact value of x if $\sqrt{3}-x=\frac{\sqrt{48}+5 x}{\sqrt{12}}$. Ans: $\frac{54-32 \sqrt{3}}{13}$
3	The area of triangle is $\left(1+\frac{5 \sqrt{5}}{2}\right) \mathrm{cm}^{2}$. If the length of the base of the triangle is $(3+2 \sqrt{5}) \mathrm{cm}$, find without using a calculator, the height of the triangle in the form of $(a+b \sqrt{5}) \mathrm{cm}$, where a and b are integers. Ans: $4-\sqrt{5}$
4	Given that $x=\sqrt{2}-\sqrt{3}$, find without using the calculator, the value of $x^{2}-\frac{1}{x^{2}}$. Ans: $-4 \sqrt{6}$
5	Without using a calculator, find the value of p and of q such that $\sqrt{\frac{1}{p+q \sqrt{5}}}=\frac{2-\sqrt{5}}{3-2 \sqrt{5}}$. Ans: $p=21, q=8$
6	Express $\frac{3}{2-\sqrt{3}}-(2-\sqrt{3})^{2}$ in the form $m+n \sqrt{3}$, where m and n are integers to be found. Ans: $-1+7 \sqrt{3}$
7	Find the values of the integers a and b such that $\frac{\sqrt{a}+b}{11}$ is the solution of the equation $x \sqrt{24}=x \sqrt{2}+\sqrt{6}$. Ans: $a=3, b=6$

