6 MUST KNOW QUESTIONS TO CONQUER POLYNOMIALS

1 The function f is defined by $\mathrm{f}(x)=4 x^{3}+p x^{2}+5 x+2$, where p is a constant.
(i) Given that $x-1$ is a factor of $\mathrm{f}(x)$, find the value of p.
(ii) Using the value of p found in (i),
(a) find the remainder when $\mathrm{f}(x)$ is divided by $2 x-3$,
(b) factorise $\mathrm{f}(x)$ completely,
(c) hence solve the equation $4(y-1)^{3}+p(y-1)^{2}+5 y-3=0$.

Answers:
(i) $p=-11$ (ii)(a) Remainder $=-1.75$ (b) $(x-1)(4 x+1)(x-2)$ (c) $y=2,3$ or $\frac{3}{4}$

2 (a) (i) Factorise $8 x^{3}+27$.
(ii) Hence determine, showing all necessary working, the number of real roots of the equation $8 x^{3}+27=0$.
(b) The coefficient of x^{3} of a cubic polynomial, $\mathrm{f}(\mathrm{x})$, is 4 and that the roots of the equation $\mathrm{f}(x)=0$ are $-1,3$ and k. Given that $\mathrm{f}(\mathrm{x})$ has a remainder of 60 when divided by -2 , find the value of k.

Ans: (a) $(2 x+3)\left(4 x^{2}-6 x+9\right)$ (ii) 1 real roots (iii) $k=7$
3 A function f defined by $\mathrm{f}(x)=2 x^{3}+p x^{2}+q x+15$, where p and q are constants, has a factor of $x-5$ and leaves a remainder of 12 when divided by $x+1$.
(i) Find the value of p and of q.
(ii) Find the remainder when $\mathrm{f}(x)$ is divided by $2 x-3$.

Ans: (i) $q=-8, p=-9$ (ii) -10.5
4 The polynomials $6 x-x^{3}$ and $8-3 x^{2}$ leave the same remainder when divided by $(x-m)$. Find the three possible values of m.

Ans: $m=-2,1,4$
5 (i) By using long division, divide $2 x^{4}+5 x^{3}-8 x^{2}-8 x+3$ by $x^{2}+3 x-1$.
(ii)Factorise $2 x^{4}+5 x^{3}-8 x^{2}-8 x+3$ completely.
(iii)Hence find the exact solutions to the equation

$$
32 p^{4}+40 p^{3}-32 p^{2}-16 p+3=0
$$

Ans: (i) Long Division, (ii) $\left(x^{2}+3 x-1\right)(2 x-3)(x+1)$ (iii) $p=\frac{3}{4}, p=-\frac{1}{2}, p=\frac{-3 \pm \sqrt{13}}{4}$
6 The polynomial $f(x)$ leaves a remainder of -5 and 7 when divided by $x+1$ and $x-2$ respectively. Find the remainder when $f(x)$ is divided by $x^{2}-x-2$.

Ans: $4 x-1$

