7 MUST KNOW QUESTIONS TO CONQUER NATURE OF ROOTS

1 The equation of a curve is $y=x^{2}+(2 k+3) x+4 k+6$, where k is a constant.
(a) Find the range of values of k for which the curve lies entirely above the x-axis for all real values of x.
(b) Find the range of values of k for which the line $y=x+2$ intersects with the curve.

Ans: (a) $-\frac{3}{2}<k<\frac{5}{2}$ (b) $k \leq-1$ or $k \geq 3$
2 (a) Solve $5 x+3>2 x^{2}$.
(b) Prove that the line $y=x-1$ always intersects the curve $y=n x^{2}+3 x-n$ at 2 distinct points for all real values of n.

Ans: (a) $-0.5<x<3$, (b) Proven
3 (a) The line $y=m x+c$ is a tangent to the circle $x^{2}+y^{2}=4$, where m and c are constants. Prove that $c^{2}-4 m^{2}=4$.
(b) Find the value of b for which $-2<x<\frac{1}{3}$ is the solution of $3 x^{2}+5 x<b$.

Ans: (a) Proven, (b) 2
4 (a) Find the values of p and q for which $\{x: x<-3$ or $x>2\}$ is the solution set of $x^{2}+q>-p x$.
(b) Find the range of values of m for which the line $y=2 x-\frac{3}{8} m$ meets the curve $y=2 x^{2}+$ $m x+6$ at two distinct points.

Ans: (a) $q=-6, p=1$ (b) $m<-4$ or $m>11$
5 (a)Find the smallest value of the integer a for which $a x^{2}+5 x+2$ is positive for all values of x. (b)Find the smallest value of the integer b for which $-5 x^{2}+b x-2$ is negative for all values of x.
Ans: $a=4, b=-6$
6 Show that the roots of the quadratic equation $3(x+p)^{2}-1=x-1$ are not real if $p>\frac{1}{12}$.
Ans: Shown
7 Prove that the line $y=x-1$ always intersects the curve $y=n x^{2}+3 x-n$ at 2 distinct points for all real values of n.

Ans: Proven

