5 MUST KNOW QUESTIONS TO CONQUER LINEAR LAW

1 The equation $y=\frac{x+c}{x+d}$, where c and d are constants, can be represented by a straight line when $x y-x$ is plotted against y. The line passes through the points $(0,4)$ and $(0.2,0)$.
(i)Find the value of c and of d,
(ii)If $(2.5, a)$ is a point on the straight line, find the value of a.

Ans:
i) $\quad c=4, d=20$
ii) $\quad a=-46$

2 The diagram shows the straight line obtained by plotting $y x^{2}$ against x^{3}.
Variables x and y are related by an equation $y=\frac{p}{x^{2}}+q x$, where p and q are constants.

(i) Find
(a) the value of p and of q,
(b) the coordinates of the point on the line at which $y=\frac{3}{2 x^{2}}$.
(ii) If the graph of $\frac{y}{x}$ is plotted against $\frac{1}{x^{3}}$ instead, state the values of the gradient and the $\frac{y}{x}$ - intercept for this graph.

Ans:
(i) (a) $\mathrm{p}=2.985$
(b) $\left(3.06, \frac{3}{2}\right)$
(ii) -0.485

3 The variables x and y are such that when the values of $x y$ are plotted against \sqrt{x}, a straight line is obtained.
It is given that $y=\frac{1}{2}$ when $x=1$, and that $y=-\frac{1}{4}$ when $x=4$.
(i) Express y in terms of x.
(ii) Find the value of y when $x=16$.

Answers:
(i) $y=\frac{4-3 \sqrt{x}}{2 x}$
(ii) $y=-\frac{1}{4}$

4 The table shows experimental values of two variables x and y. The two variables are related by the equation $b \sqrt{y}=a b+a x^{2}$, where a and b are non-zero constants. One of the y values have been misprinted.

x	1	1.5	2	2.5	3	3.5
y	5.23	6.98	7.88	14.3	20.9	30.3

(i) Using a scale of 1 cm to 1 unit on the x^{2} axis and 2 cm to 1 unit on the \sqrt{y} axis, plot x^{2} against \sqrt{y} and draw a straight line graph on the grid provided.
(ii) Use your graph to estimate the value of a and of b.
(iii) Using your graph, identify the abnormal reading and estimate its correct value.

Answers:
(i)

x^{2}	1	2.25	4	6.25	9	5.50
\sqrt{y}	2.29	2.64	2.81	3.87	4.57	12.25

(ii) $a=2, b=7.06$
(iii)

Abnormal reading when $x^{2}-4, \sqrt{y}=2.81$
$5 \quad$ The table shows experimental values of two variables x and y, which are known to be connected by the equation $y x^{n}=A$, where n and A are constants.

x	1.0	1.5	2.0	2.5	3.0
y	22.0	13.0	8.9	6.9	5.3

(i) Plot $\lg y$ against $\lg x$ and draw a straight line graph.
(ii) Use your graph to estimate the value of A and of n.
(iii) On the same diagram, draw the line representing the equation $y=x^{2}$ and hence find the value of x which satisfied the equation $x^{n+2}=A$.

Answers:
(i)

$\lg x$	0	0.176	0.301	0.398	0.477
$\lg y$	1.34	1.11	0.949	0.839	0.724

(ii) $n=1.28, A=21.9$
(iii) $x=2.57$

