7 MUST KNOW QUESTIONS TO CONQUER COORDINATE GEOMETRY

1	 The diagram shows an isosceles triangle $A B C$ with vertices $A(0,5), B(8,14)$ and $C(k, 15)$. (i) Find the value of k. D is a point on the x-axis such that $A D=C D$. (ii) Find the equation of $B D$. (iii)Find the coordinates of D. (iv)Find the areas of triangle $A B C$ and of quadrilateral $A B C D$. Ans: (i) $k=-4($ reject $), k=20$, (ii) $y=-2 x+3-$, (iii) $D(15,0)$ (iv) Area of $\mathrm{ABC}=50$ units 2, Area of $\mathrm{ABC}=175$ units 2
2	 The diagram shows a triangle $A B C$ in which the coordinates of the points A and C are $(3,2)$ and $(7,4)$ respectively. $\angle A C B=90^{\circ}$. The line $B D$ is parallel to $A C$ and D is the point $\left(13 \frac{1}{2}, 11\right)$.The lines $B A$ and $D C$ are extended to meet at E. Find (i) the equation of line $B D$, (ii) the coordinates of B, (iii)the ratio of the area of the quadrilateral $A B D C$ to the area of the triangle $B C D$. Ans: (i) $y=\frac{1}{2} x+\frac{17}{4}$ (ii) $B(5.5,7)$ (iii) $3: 2$

The vertices of the triangle $A B C$ have coordinates $(-4,5),(5,-4)$ and $(8,11)$ respectively. $A E$ is perpendicular to $B C, C D$ is perpendicular to $A B$, and $A E$ and $C D$ meet at F.
(i) Find the coordinates of D and of F.
(ii) Find the area of triangle $A B C$.

Ans: (i) $D=(-1,2), F(1,4)$ (ii) Area $=81$ units 2
4 Given that the points $(d, 10 d),(0.75,0)$ and $(1.5,5+4 d)$ are collinear, find the possible values of d.

Ans: $d=-0.5$ or $=-1.875$
5 The diagram shows a rhombus $A B C D . B$ and D are $(0,5)$ and $(12,11)$ respectively and A lies on the x-axis.

(i) Show that the gradient of $A C$ is -2 .

Find,
(ii) the midpoint of $B D$,
(iii) the coordinates of A and C,
(iv) the area of $A B C D$.

Ans: (i) Shown, (ii) Midpoint $(6,8)$ (iii) $A(10,0) C(2,16)$ (iv) 120 units 2

The diagram shows a parallelogram $A B C D$ in which the coordinates of the points A and C are $(2,1)$ and $(7,14)$ respectively. Given that the point D lies on the y-axis and that the gradient of $A D$ is -3 , find
(a) the coordinates of B and of D,
(b) the area of the parallelogram.

Ans: (a) $B(9,8) \mathrm{D}(0,7)$, (b) 56 units 2

The diagram shows a trapezium $A B C D$ in which $A B$ is parallel to $D C$ and angle $B C D=$ 90°. The vertices of the trapezium are at the points $A\left(-1,8 \frac{1}{3}\right), B, C(15,6)$ and $D . D C$ cuts the x-axis at M, the midpoint of $D C$. Given that the equation of $A B$ is $3 y=2 x+27$, find
(i) the coordinates of B,
(ii) the coordinates of D,
(iii)the area of trapezium $A B C D$.

Ans: (i) $B=(9,15), D=(-3,-6)$, (iii) 182 units 2

8 The diagram below shows part of a polygon.
The three vertices of the polygon are given by $P(2,8), Q(8,16)$ and $R(16,10)$.

(i) Show that $\angle P Q R=90^{\circ}$.
(ii) Find the equation of the perpendicular bisector of $P Q$.

The perpendicular bisector of $P Q$ intersects the line $3 y=4 x-9$ at point S.
(iii) Show that the coordinate of S is $(9,9)$.
(iv) Determine if points P, R and S are collinear.
(v) Find the area of $P Q S$.

Ans: (i) Shown, (ii) $y=-\frac{3}{4} x+15 \frac{3}{4}$ (iii) Shown (iv) Yes. Since PR and RS have the same gradient and they share a common point R, they must be collinear. (v) 25 units 2

