6 MUST KNOW QUESTIONS TO CONQUER CIRCLES

$1 \begin{aligned} & \text { (i) Write down the equation of the circle with centre } A(8,2) \text { and radius } \sqrt{80} \text {. } \\ & \text { This circle intersects the } y \text {-axis at points } P \text { and } Q \text {. } \\ & \text { (ii) Find the length } P Q \text {. } \\ & \text { A second circle, centre } B \text {, also passes through } P \text { and } Q \text {. } \\ & \text { (iii)State the } y \text {-coordinate of } B \text {. } \\ & \text { Given that the } x \text {-coordinate of } B \text { is negative and that the radius of the second circle is } 5 \text {, } \\ & \text { find }\end{aligned}$ (iv)the x-coordinate of B.

Ans: $(x-8)^{2}+(y-2)^{2}=80$, (ii) $P Q=8$ units, (iii) 2 (iv) $k=3$ (rej), $k=-3$
2 The equation of a circle C is $x^{2}+6 x+y^{2}-10 y=66$.
(i) Find the radius and the coordinates of the centre of the circle.
(ii) Given that $P Q$ is the diameter of the circle, where P is the point $(5,11)$, find the coordinates of the point Q.
(iii)Find the equation of the circle C_{1}, which is a reflection of the circle C in the line $x=-1$.

Ans: radius $=10$ units, (ii) $Q(-11,-1),\left(\right.$ (iii) $(x-1)^{2}+(y-5)^{2}=100$
3 A circle C_{1} has the equation $(x-4)^{2}+(y-6)^{2}=100$ and another circle C_{2} has the equation $x^{2}+y^{2}+2 x-16 y+49=0$.
(i) Find the coordinates of the centre of the circle C_{2} and its radius.
(ii) Show that C_{2} lies completely inside of C_{1},

Ans: (i) Centre ($-1,8$) (ii) Shown
4 The positive x - and y-axes are tangents to a circle C.
(i) What can be deduced about the coordinates of the centre of C.

The line T is tangent to C at the point $(8,1)$ on the circle. Given that the centre of C lies above and to the right of $(8,1)$, find
(ii) the equation of C,
(iii)the equation of T.

Ans: (i) The values of the x and y coordinates are the same.
(ii) $(x-13)^{2}+(y-13)^{2}=13^{2}$ (iii) $y=-\frac{5}{12} x+\frac{13}{3}$

5 A circle, centre C, has a diameter $A B$ where A is the point $(-13,-4)$ and B is the point $(3,8)$.
(i) Find the coordinates of C and the radius of the circle.
(ii) Find the equation of the circle.
(iii)Show that the equation of the tangent to the circle at A is $3 y+4 x=-64$.

Ans: $C(-5,2)$, radius $=10$, (ii) $(x+5)^{2}+(y-2)^{2}=100$ (iii) Shown
6 A circle C_{1}, centre $C(3,-1)$, has a diameter $A B$ where A is the point $(6,3)$.
(i) Find the radius of the circle C_{1} and the coordinates of B.
(ii) Find the equation of the circle C_{1}.
(iii) Show that the equation of the tangent to the circle at A is $4 y+3 x-30=0$.

The circle C_{2} is the reflection of the circle C_{1} along the y-axis.
(iv) Find the equation of the circle C_{2}.
(v) Find the coordinates of the points of intersection of the two circles.

Ans: (i) $\mathrm{r}=5$ units, $B=(0,-5)$ (ii) Eqn $C_{1}:(x-3)^{2}+(y+1)^{2}=5^{2}$
(iii) Shown (iv) $C_{2}:(x+3)^{2}+(y+1)^{2}=5^{2}$ (v) $(0,3) \&(0,-5)$

