7 MUST KNOW QUESTIONS TO <u>CONQUER</u> BINOMIAL EXPANSION

1	(i) Expand $(1 - 2x)^9$ in ascending powers of x up to the term in x^3 .
	(ii) Find the value of k, given that the coefficient of x in the expansion of $\begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$ (1 - 2) $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$
	$\left(3x + \frac{1}{kx^2}\right)(1 - 2x)^9$ is -53.
	Ans
	(i) $(1 - 2x)^9 = 1 - 18x + 144x^2 - 672x^3 + \cdots$
	(ii) $k = 12$
2	(i) Example $(2 + 2x)^8$ is second in a second of $x = x + x + x + x + x + x^3$
2	(i) Expand $(3 + 2x)^5$, in ascending powers of x, up to the term in x^5 . (ii) Write down the expansion of $(3 - x)^3(3 + 2x)^8$ in ascending powers of x, up to x^2
	(iii)By letting $x = 0.01$ and your expansion in (iii), find the value of $2.99^3 \times 3.02^8$,
	giving your answer correct to 3 significant figures.
	Show your workings clearly.
	Ans:
	i) $6561 + 34992x + 81648x^2 + 108864x^3 + \dots$
	ii) $177147 + 767637x + 2854035x^2 + \cdots$
3	(i) Find the term independent of x in the expansion of $2x \left(2x - \frac{1}{x^2}\right)^8$.
	(ii) Given that the coefficient of x in the expansion of $\left(x + \frac{k}{k}\right)^{16}$ is 4368, find the
	value of k.
	Ans:
	i) -3584 ii) $k = 2$
4	(i) By considering the general term in the binomial expansion of $\left(kx - \frac{1}{2}\right)^7$ where
	k is a constant, explain why there are no even powers of x in this expansion.
	(ii) Given that the coefficient of the third term is thrice the coefficient of the second
	term, find the value of k.
	Ans:
	(i) Since the power of x is $7 - 4r = 2(3 - 2r) + 1$ will always be odd, there are no
	even powers of x for this expansion.
	(11) $\kappa = -1$

5	(i) Write down, and simplify, the first three terms in the expansion of $\left(1-\frac{x^2}{2}\right)^n$, in
	ascending powers of x , where n is a positive integer greater than 2.
	(ii) The first three terms in the expansion, in ascending powers of x , of
	$\left(2+3x^2\right)\left(1-\frac{x^2}{2}\right)^n$ are $2-px^2+2x^4$, where p is an integer. Find the value of n
	and of <i>p</i> .
	Ans:
	i) $1 - n\left(\frac{x^2}{2}\right) + \frac{n(n-1)}{2}x^4 + \cdots$
	ii) $n = 8, n = -1$ (NA), $p = 5$
6	(i) Find the value of <i>n</i> , given that the coefficients of x^4 and x^6 in the expansion of
	$\left(1+\frac{1}{3}x^2\right)^n$ are in the ratio of 3:2.
	(ii)Hence, find the coefficient of x^6 in the expansion of $(1 - 6x + 9x^2) \left(1 + \frac{1}{3}x^2\right)^n$.
	Ans:
	(a) (i) $n = 8$ (ii) $30\frac{2}{27}$
7	(i) Find the first 3 terms in the expansion of $\left(2-\frac{x}{4}\right)^n$ in ascending powers of x,
	where n is a positive integer greater than 2. Give the terms in their simplest forms.
	(ii) In the expansion of $(4 + x)^2 \left(2 - \frac{x}{4}\right)^n$, there is no term in x^2 . Find the value of <i>n</i> .
	Ans:
	(i) $2^n - \frac{n \times 2^n x}{8} + \frac{n(n-1)}{128} \times 2^n \times x^2 + \cdots$ (ii) $n = 1$ (rejected) or $n = 8$