7 MUST KNOW QUESTIONS TO CONQUER BINOMIAL EXPANSION

(ii) Find the value of k, given that the coefficient of x in the expansion of $\left(3 x+\frac{1}{k x^{2}}\right)(1-2 x)^{9}$ is -53 .

Ans:
(i) $(1-2 x)^{9}=1-18 x+144 x^{2}-672 x^{3}+\cdots$
(ii) $k=12$
(i) Expand $(3+2 x)^{8}$, in ascending powers of x, up to the term in x^{3}.
(ii) Write down the expansion of $(3-x)^{3}(3+2 x)^{8}$ in ascending powers of x, up to x^{2}.
(iii)By letting $x=0.01$ and your expansion in (iii), find the value of $2.99^{3} \times 3.02^{8}$, giving your answer correct to 3 significant figures.
Show your workings clearly.
Ans:
i) $\quad 6561+34992 x+81648 x^{2}+108864 x^{3}+\ldots$
ii) $177147+767637 x+2854035 x^{2}+\cdots$
iii) 185000
(i) Find the term independent of x in the expansion of $2 x\left(2 x-\frac{1}{x^{2}}\right)^{8}$.
(ii) Given that the coefficient of x in the expansion of $\left(x+\frac{k}{2 x^{2}}\right)^{16}$ is 4368 , find the value of k.

Ans:
i) -3584
ii) $k=2$

4 (i) By considering the general term in the binomial expansion of $\left(k x-\frac{1}{x^{3}}\right)^{7}$, where k is a constant, explain why there are no even powers of x in this expansion.
(ii) Given that the coefficient of the third term is thrice the coefficient of the second term, find the value of k.

Ans:
(i) Since the power of x is $7-4 r=2(3-2 r)+1$ will always be odd, there are no even powers of x for this expansion.
(ii) $k=-1$

5 (i) Write down, and simplify, the first three terms in the expansion of $\left(1-\frac{x^{2}}{2}\right)^{n}$, in ascending powers of x, where n is a positive integer greater than 2 .
(ii) The first three terms in the expansion, in ascending powers of x, of $\left(2+3 x^{2}\right)\left(1-\frac{x^{2}}{2}\right)^{n}$ are $2-p x^{2}+2 x^{4}$, where p is an integer. Find the value of n and of p.

Ans:
i) $\quad 1-n\left(\frac{x^{2}}{2}\right)+\frac{n(n-1)}{8} x^{4}+\cdots$
ii) $\quad n=8, n=-1(\mathrm{NA}), p=5$

6 (i) Find the value of n, given that the coefficients of x^{4} and x^{6} in the expansion of $\left(1+\frac{1}{3} x^{2}\right)^{n}$ are in the ratio of $3: 2$.
(ii)Hence, find the coefficient of x^{6} in the expansion of $\left(1-6 x+9 x^{2}\right)\left(1+\frac{1}{3} x^{2}\right)^{n}$. Ans:

$$
\text { (a) (i) } \mathrm{n}=8 \quad \text { (ii) } 30 \frac{2}{27}
$$

(i) Find the first 3 terms in the expansion of $\left(2-\frac{x}{4}\right)^{n}$ in ascending powers of x, where n is a positive integer greater than 2 . Give the terms in their simplest forms.
(ii) In the expansion of $(4+x)^{2}\left(2-\frac{x}{4}\right)^{n}$, there is no term in x^{2}. Find the value of n.

Ans:
(i) $2^{n}-\frac{n \times 2^{n} x}{8}+\frac{n(n-1)}{128} \times 2^{n} \times x^{2}+\cdots \quad$ (ii) $\mathrm{n}=1$ (rejected) or $\mathrm{n}=8$

