

7 MUST KNOW QUESTIONS TO <u>CONQUER</u> TRIGONOMETRIC FUNCTIONS

In the diagram, AB = 8 cm, AC = 10 cm, BC = 6 cm, BC = CD and ACD is a straight line.

- (a) Explain why $\angle ABC$ is a right angle.
- (b) Without finding any angle, find the area of ΔBCD .
- (c) Write down exact value of $\cos \angle BCD$.

[2] [1]

[1]

In the diagram, ABC is a right-angled triangle and ADB is a straight line. It is given that BC = 32 cm, AC = 19 cm and $\angle BDC = 90^{\circ}$.

Find

[1] [1]

- (a) $\angle DBC$,
- (b) *DC*.
- 3 A triangle ABC has sides AB = 5 cm, BC = 12 cm and AC = 13 cm.

- (a) Prove that triangle *ABC* is a right-angled triangle.
- (b) Hence, find
 - (i) $\sin \angle BAC$,

[1]

[2]

(ii) angle ACB.

[I]

4 A ladder, AB, 11 m long, is placed against a wall. The angle between the ladder and the floor is 55°.

(a) Find *WB*.

(b) The ladder slides down the wall by 1.5 m to a new position *XY*. Find the new angle between the ladder and the floor.

[3]

The diagram below shows a vertical flagpole PC placed at the top of the hill. B is vertically below C and angle $ABC = 90^{\circ}$, angle $PAB = 18^{\circ}$, AB = 120 m and AC = 125 m. Find the height of the flagpole.

6 It is given that AC = 15 cm, AD = 12 cm, BC = 26 cm and CD = 9 cm.

(a) Expressing as a fraction in its lowest form, find

(i) $\tan \angle ACD$,

[1]

(ii) $\sin \angle BAD$.

[2]

(b) Find the shortest distance from C to AB.

[2]

/

In the diagram above, triangle PQR is an isosceles triangle with PQ = PR = a cm and QR = 10 cm

(a) Express in terms of a,

(i) the value of $\cos \angle PQR$,

[1]

(ii) the shortest distance from P to QR.

[1]

(b) Given that a = 13, find the value of $\sin \angle PRQ$.

Leave your answer as a fraction

[2]

Maths Secrets Page 2

Answer Key

1 | Solution:

(b) Area = 14.4
Area =
$$\frac{1}{2}$$
(6)(6) $\frac{4}{5}$
= 14.4

Ans: (a) Since $6^2 + 8^2 = 10^2$, by converse of Pythagoras Theorem, ABC is a right-angle triangle, angle ABC is a right angle. (b) 14.4 (c) $\cos \angle BCD = -\frac{3}{5}$

2 | Solutions:

(a)
$$\tan \angle DBC = \frac{19}{32}$$
 (b) $\sin 30.70 = \frac{DC}{32}$
 $\angle DBC = 30.7^{\circ}$ $DC = 16.3 \text{ cm}$

Ans: (a) 30.7° (b) 16.3 cm

3 | Solution:

(a)
$$AC^2 = 13^2 = 169$$

 $AB^2 + BC^2 = 5^2 + 12^2 = 169$
Since $AB^2 + BC^2 = AC^2$, by converse of Pythagoras theorem, triangle ABC is a right-angled triangle, $\angle ABC = 90^\circ$

Ans: (b)(i) $\sin \angle BAC = \frac{12}{13}$ (ii) $\angle ACB = 22.6^{\circ}$

4 | Solutions:

(a)
$$\cos 55^{\circ} = \frac{WB}{11}$$
 (b) $\sin 55^{\circ} = \frac{AW}{11}$
$$AW = 11 \sin 55^{\circ} = 9.0107$$

$$XW = .107 - 1.5 = 7.5107$$

$$\sin \angle XYW = \frac{7.5107}{11}$$

$$\angle XYW = 43.0619 = 43.1^{\circ}$$

Ans: (a) 6.31*m* (b) 43.1°

5 | Solution:

tan
$$18^{\circ} = \frac{PB}{120}$$

PB = 120 x tan 18°
= 38.990 (5 s.f.)
By the Pythagoras Theorem,
 $125^2 = 120^2 + BC^2$
 $BC^2 = 125^2 - 120^2$
 $BC = \sqrt{125^2 - 120^2}$
= 35
Height of a flagpole = 38.990 - 35= 3.990 = 3.99 m (3 s.f.)

Ans: 3.99 m (3s.f.)

6 | Solutions:

(a)(ii)
$$AB = \sqrt{35^2 + 12^2} = 37$$

 $\sin \angle BAD = \frac{35}{37}$
(b) Area of $ABC = \frac{1}{2}(26)(12)$

(b) Area of
$$ABC = \frac{1}{2}(26)(12)$$

= 156 ---- M1 (area of ABC)

Let *h* be the shortest distance between C to AB

$$\frac{1}{2}(37)h = 156$$
$$h = 8\frac{16}{37}$$

Ans: (a)(i)
$$\tan \angle ACD = \frac{4}{3}$$
 (ii) $\sin \angle BAD = \frac{35}{37}$ (b) $h = 8\frac{16}{37}$

Solutions:

(a) (i)
$$cos \angle PQR = \frac{10 \div 2}{a}$$

$$= \frac{5}{a}$$
(ii) shortest distance = $\sqrt{a^2 - 5^2}$

(ii) shortest distance =
$$\sqrt{a^2 - 5^2}$$

$$=\sqrt{a^2-25}$$

(ii) shortest distance =
$$\sqrt{a^2 - 5^2}$$

= $\sqrt{a^2 - 25}$
 $sin \angle PRQ = \frac{\sqrt{a^2 - 25}}{a}$
(b) = $\frac{\sqrt{13^2 - 25}}{13}$
= $\frac{12}{13}$

Ans: (a)(i)
$$\frac{5}{a}$$
 (ii) $\sqrt{a^2 - 25}$ (b) $\frac{12}{13}$

Page 4 Maths Secrets