7 MUST KNOW QUESTIONS TO CONQUER

TRIGONOMETRIC FUNCTIONS

(a) Explain why $\angle A B C$ is a right angle.
(b) Without finding any angle, find the arca of $\triangle B C D$.
(c) Write down exact value of $\cos \angle B C D$.

2 In the diagram, $A B C$ is a right-angled triangle and $A D B$ is a straight line.
It is given that $B C=32 \mathrm{~cm}, A C=19 \mathrm{~cm}$ and $\angle B D C=90^{\circ}$.

Find
(a) $\angle D B C$,
(b) $D C$.

3 A triangle $A B C$ has sides $A B=5 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $A C=13 \mathrm{~cm}$.

(a) Prove that triangle $A B C$ is a right-angled triangle.
(b) Hence, find
(i) $\sin \angle B A C$,
(ii) angle $A C B$.

4 A ladder, $A B, 11 \mathrm{~m}$ long, is placed against a wall. The angle between the ladder and the floor is 55°.

(a) Find $W B$.
(b) The ladder slides down the wall by 1.5 m to a new position $X Y$.

Find the new angle between the ladder and the floor.
5 The diagram below shows a vertical flagpole $P C$ placed at the top of the hill. B is vertically below C and angle $A B C=90^{\circ}$, angle $P A B=18^{\circ}, A B=120 \mathrm{~m}$ and $A C=125 \mathrm{~m}$. Find the height of the flagpole.

6	It is given that $A C=15 \mathrm{~cm}, A D=12 \mathrm{~cm}, B C=26 \mathrm{~cm}$ and $C D=9 \mathrm{~cm}$. (a) Expressing as a fraction in its lowest form, find (i) $\tan \Varangle A C D$, (ii) $\sin \Varangle B A D$. (b) Find the shortest distance from C to $A B$.	$[1]$ $[2]$ $[2]$
7		

In the diagram above, triangle $P Q R$ is an isosceles triangle with $P Q=P R=a \mathrm{~cm}$ and $Q R=10 \mathrm{~cm}$
(a) Express in terms of a,
(i) the value of $\cos \angle P Q R$,
(ii) the shortest distance from P to $Q R$.
b) Given that $a=13$, find the value of $\sin \angle P R Q$.

Leave your answer as a fraction

Solution:
(b) Area $=14.4$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(6)(6) \frac{4}{5} \\
& =14.4
\end{aligned}
$$

Ans: (a) Since $6^{2}+8^{2}=10^{2}$, by converse of Pythagoras Theorem, $A B C$ is a right-angle triangle, angle ABC is a right angle. (b) 14.4 (c) $\cos \angle B C D=-\frac{3}{5}$

2 Solutions:
(a) $\tan \angle D B C=\frac{19}{32}$
(b) $\sin 30.70=\frac{D C}{32}$
$\angle D B C=30.7^{\circ}$
$D C=16.3 \mathrm{~cm}$

Ans: (a) 30.7° (b) 16.3 cm
3 Solution:
(a) $A C^{2}=13^{2}=169$
$A B^{2}+B C^{2}=5^{2}+12^{2}=169$
Since $A B^{2}+B C^{2}=A C^{2}$, by converse of Pythagoras theorem, triangle
$A B C$ is a right-angled triangle, $\angle A B C=90^{\circ}$
Ans: (b)(i) $\sin \angle B A C=\frac{12}{13}$ (ii) $\angle A C B=22.6^{\circ}$
4 Solutions:
(a) $\cos 55^{\circ}=\frac{W B}{11}$
(b) $\sin 55^{\circ}=\frac{A W}{11}$
$W B=6.3093=6.31 \mathrm{~m}$
$A W=11 \sin 55^{\circ}=9.0107$
$X W=.107-1.5=7.5107$
$\sin \angle X Y W=\frac{7.5107}{11}$
$\angle X Y W=43.0619=43.1^{\circ}$

Ans: (a) 6.31 m (b) 43.1°
5 Solution:
$\tan 18^{\circ}=\frac{P B}{120}$
$\mathrm{PB}=120 \mathrm{x} \tan 18^{\circ}$
$=38.990$ (5 s.f.)
By the Pythagoras Theorem,
$125^{2}=120^{2}+B C^{2}$
$B C^{2}=125^{2}-120^{2}$
$B C=\sqrt{125^{2}-120^{2}}$
$=35$
Height of a flagpole $=38.990-35=3.990=3.99 \mathrm{~m}$ (3 s.f.)

Ans: 3.99 m (3s.f.)

6 Solutions:
(a)(ii) $A B=\sqrt{35^{2}+12^{2}}=37$

$$
\sin \Varangle B A D=\frac{35}{37}
$$

(b) Area of $A B C=\frac{1}{2}(26)(12)$

$$
=156----\mathrm{M} 1 \text { (area of } A B C \text {) }
$$

Let h be the shortest distance between C to AB

$$
\begin{aligned}
\frac{1}{2}(37) h & =156 \\
h & =8 \frac{16}{37}
\end{aligned}
$$

Ans: (a)(i) $\tan \Varangle A C D=\frac{4}{3}$ (ii) $\sin \Varangle B A D=\frac{35}{37}$ (b) $h=8 \frac{16}{37}$
Solutions:
(a) (i)

$$
\cos \angle P Q R=\frac{10 \div 2}{a}
$$

$$
=\frac{5}{a}
$$

(ii) shortest distance $=\sqrt{a^{2}-5^{2}}$

$$
\begin{aligned}
\sin \angle P R Q & =\frac{\sqrt{a^{2}-25}}{a} \\
& =\frac{\sqrt{13^{2}-25}}{13} \\
& =\frac{12}{13}
\end{aligned}
$$

(b)

Ans: (a)(i) $\frac{5}{a}$ (ii) $\sqrt{a^{2}-25}$ (b) $\frac{12}{13}$

