5 MUST KNOW QUESTIONS TO CONQUER PYTHAGORAS THEOREM

1	The diagram shows a triangle $A B C$ with sides $A B=13 \mathrm{~cm}, A C=19 \mathrm{~cm}, B D=5$ cm and angle $A D B=90^{\circ}$. (a) Find the length of $A D$. (b) Hence or otherwise, find the length of $C D$. (c) Is angle $A B C=90^{\circ}$? Show your reason clearly.
2	The diagram shows a ladder, $X Y$, that leans against a vertical wall where $X Z=3.5$ m and $Y Z=2 \mathrm{~m}$. (a) Find the length of the ladder. (b) The upper end X slides down 1.2 m to a point A. Calculate the distance the lower end Y has slid away from its original position to a point B.
3	In the figure below, $A B=50 \mathrm{~cm}, B C=48 \mathrm{~cm}$ and $A C=14 \mathrm{~cm}$. (a) Determine if $\triangle A C B$ is a right-angled triangle. (b) Find the length $C M$, which is the perpendicular distance from C to $A B$.

Answer Key

Solutions:
(a) By Pythagoras Theorem,
(c) $B C=\sqrt{7^{2}-5^{2}}$

$$
\begin{aligned}
A D & =\sqrt{13^{2}-5^{2}} \\
& =12 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{74} \mathrm{~cm} \\
A B^{2} & +B C^{2}=13^{2}+(\sqrt{74})^{2} \\
& =243
\end{aligned}
$$

(b) $C D=19-12=7 \mathrm{~cm}$
$A C^{2}=19^{2}$

$$
=361
$$

Since $A B^{2}+B C^{2} \neq A C^{2}$, by the converse of Pythagoras' Theorem, $\Varangle A B C$ is not 90°.
Ans: (a) 12 cm (b) 7 cm
(a) Using Pythagoras’ Theorem,
$X Y=\sqrt{3.5^{2}+2^{2}}$
$=4.0311288$
$=4.03 \mathrm{~m}$
(b)

Using Pythagoras' Theorem
$B Z^{2}=4.0311^{2}-2.3^{2}$
$B Z=\sqrt{10.95976}$
$B Z=3.31055$
$B Z=3.31 \mathrm{~m}$
$3.31-2=1.31 m$

Solutions:
(a) $14^{2}+48^{2}=2500$
$50^{2}=2500$
Since $14^{2}+48^{2}=50^{2}$
Therefore $\triangle A C B$ is a right-angled triangle by Pythagoras Theorem
(b) $\frac{1}{2} \times C M \times 50=\frac{1}{2} \times 14 \times 48$

$$
\begin{aligned}
& C M=\frac{336}{25} \\
& C M=13.44 \mathrm{~cm}
\end{aligned}
$$

Ans: (b) 13.44 cm
4 Solutions
(b) $A C=\sqrt{A F^{2}+F C^{2}}$
$r=\sqrt{(r-3)^{2}+(r-2)^{2}}$
$r=\sqrt{\left(r^{2}-6 r+9\right)+\left(r^{2}-4 r+4\right)}$
$r=\sqrt{2 r^{2}-10 r+13}$
$r^{2}=2 r^{2}-10 r+13$
$r^{2}-10 r+13=0$ (shown)
(c) $r^{2}-10 r+13=0$ $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=$
$\frac{-(-10) \pm \sqrt{(-10)^{2}-4(1)(13)}}{2(1)}=\frac{10 \pm \sqrt{48}}{2}$
$r=8.4641$ or 1.5359

Ans: (a) $r-2$ (c) 8.4641 or 1.5359

5 Ans:
$A B^{2}=13^{2}$
$=169$
$B C^{2}+C A^{2}=11^{2}+4^{2}$
$=137$
$A B^{2} \neq B C^{2}+C A^{2}$
$\triangle A B C$ is not a right-angled triangle.

