[2]

[2]

5 MUST KNOW QUESTIONS TO <u>CONQUER</u> PYTHAGORAS THEOREM

The diagram shows a triangle ABC with sides AB = 13 cm, AC = 19 cm, BD = 5 cm and angle $ADB = 90^{\circ}$.

- (a) Find the length of AD.
- (b) Hence or otherwise, find the length of *CD*.
- (c) Is angle $ABC = 90^{\circ}$?

 Show your reason clearly.

 [2]
- The diagram shows a ladder, XY, that leans against a vertical wall where XZ = 3.5 m and YZ = 2 m.

- (a) Find the length of the ladder.
- (b) The upper end X slides down 1.2 m to a point A. Calculate the distance the lower end Y has slid away from its original position to a point B. [2]
- In the figure below, AB = 50 cm, BC = 48 cm and AC = 14 cm.

- (a) Determine if $\triangle ACB$ is a right-angled triangle.
- (b) Find the length CM, which is the perpendicular distance from C to AB. [2]

Maths Secrets Page 1

[1]

4 Triangle ABC is an isosceles triangle. BC = (2r - 4) cm and AB = AC = r cm. AF = (r - 3) cm is the perpendicular height of triangle ABC.

- (a) Write down an expression, in terms of r, for BF.
- (b) By using Pythagoras' Theorem, form an equation in r and show that it reduces to $r^2 10r + 13 = 0$.
- (c) Solve the equation $r^2 10r + 13 = 0$.
- 5 Use Pythagoras' Theorem to decide whether triangle ABC shown in the figure below is a right-angled triangle. [2]

Maths Secrets

Page 2

Answer Key

1 | Solutions:

(a) By Pythagoras Theorem, (c)
$$BC = \sqrt{7^2 - 5^2}$$

 $AD = \sqrt{13^2 - 5^2}$ $= \sqrt{74} cm$

(c)
$$BC = \sqrt{7^2 - 5^2}$$

$$= \sqrt{74} cm$$

$$AB^{2} + BC^{2} = 13^{2} + (\sqrt{74})^{2}$$

$$= 243$$

(b)
$$CD = 19 - 12 = 7$$
 cm

$$AC^2 = 19^2$$

= 361

Since $AB^2 + BC^2 \neq AC^2$, by the converse of Pythagoras' Theorem, $\angle ABC$ is not 90°.

Ans: (a) 12 cm (b) 7 cm

Solutions:

(a) Using Pythagoras' Theorem,

$$XY = \sqrt{3.5^2 + 2^2}$$

= 4.0311288
= 4.03m

Using Pythagoras' Theorem

$$BZ^2 = 4.0311^2 - 2.3^2$$

$$BZ = \sqrt{10.95976}$$

3.31 - 2 = 1.31m

$$BZ = 3.31055$$

$$BZ = 3.31 \text{ m}$$

(a)
$$14^2 + 48^2 = 2500$$

$$50^2 = 2500$$

Since
$$14^2 + 48^2 = 50^2$$

Therefore $\triangle ACB$ is a right-angled triangle by Pythagoras Theorem

(b)
$$\frac{1}{2} \times CM \times 50 = \frac{1}{2} \times 14 \times 48$$

$$CM = \frac{336}{25}$$

$$CM = 13.44cm$$

Ans: (b) 13.44cm

Solutions:

(b)
$$AC = \sqrt{AF^2 + FC^2}$$
 (c) $r^2 - 10r + 13 = 0$
 $r = \sqrt{(r-3)^2 + (r-2)^2}$ $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} =$
 $r = \sqrt{(r^2 - 6r + 9) + (r^2 - 4r + 4)}$ $r = \sqrt{2r^2 - 10r + 13}$ $r = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(13)}}{2(1)} = \frac{10 \pm \sqrt{48}}{2}$

$$r = \sqrt{2r^2 - 10r + 13}$$
$$r^2 = 2r^2 - 10r + 13$$

$$r^2 - 10r + 13 = 0$$
 (shown)

(c)
$$r^2 - 10r + 13 = 0$$

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} =$$

$$\frac{-(-10)\pm\sqrt{(-10)^2-4(1)(13)}}{2(1)} = \frac{10\pm\sqrt{44}}{2}$$

$$r = 8.4641 \ or \ 1.5359$$

Ans: (a) r - 2 (c) 8.4641 or 1.5359

5 Ans:

$$AB^{2} = 13^{2}$$

$$= 169$$

$$BC^{2} + CA^{2} = 11^{2} + 4^{2}$$

$$= 137$$

$$AB^{2} \neq BC^{2} + CA^{2}$$

 $\triangle ABC$ is not a right-angled triangle.

Maths Secrets Page 4