5 MUST KNOW QUESTIONS TO CONQUER

DIRECT \& INVERSE PROPORTIONS

1	The volume of a ball, $V \mathrm{~cm}^{3}$, is directly proportional to the cube of its radius, r. When $r=7.5 . V=562.5 \pi \mathrm{~cm}^{3}$ (a) Find the equation connecting V and r. Give the value of k, the constant, in terms of π. (b) Calculate the value of V when $r=9$, giving your answer in terms of π.	[2]
2	The speed of a bullet, s, fired from a gun is inversely proportional to the square root of its mass, m. When the mass is 64 g , the speed is $676 \mathrm{~m} / \mathrm{s}$. (a) Find an equation connecting s and m. (b) Find the mass of the bullet if its speed is $520 \mathrm{~m} / \mathrm{s}$.	[2] [1]
3	P is directly proportional to the square of r and $P=200$ when $r=5$. (a) Express the P in terms of r. (b) When r is increased by 300%, find the percentage increase in P.	[1] [2]
4	(a) y is inversely proportional to the square of x. Given that $y=8$ for a particular value of x, find the value of y when the value of x is doubled. (b) Given that a is directly proportional to the cube of b, and $a=24$ for a particular value of b. Find the value of a when this value of b is halved.	[1] [2]
5	Sean wants to travel to Johor Bahru from his house. The following table shows the time (t hours) that he will take it he travels at different speeds ($v \mathrm{~km} / \mathrm{h}$). (a) Are v and t in direct or inverse proportion? Show working to support your answer. (b) Find the speed, in km / h, of Sean if he takes 3 hours and 30 minutes to get to Johor Bahru from his house. Express your answer correct to 3 decimal places. (c) If Sean wants to reach Johor Bahru at 2 am , what time should he set off if he plans to drive at $80 \mathrm{~km} / \mathrm{h}$?	$[2]$ $[1]$ $[2]$

Answer Key

Solutions:
(a) When $r=7.5 . V=562.5 \pi$.
(b) Whenr $=9$,
$562.5 \pi=k('$
(b) $520=\frac{5408}{\sqrt{m}}$
$k=\frac{562}{7}$
$k=\frac{4}{3} \pi$
$m=\left(\frac{5408}{520}\right)^{2}$
$I=\frac{4}{3} \pi(9)^{3}$
$=\frac{4}{3} \pi(729)$
$=972 \pi \mathrm{~cm}^{3}$
$V=\frac{4}{3} \pi$
$m=108.16 \mathrm{~g}$

Ans: (a) $V=\frac{4}{3} \pi r^{3}$ (b) $972 \pi \mathrm{~cm}^{3}$
2 Solutions:
(a) $s=\frac{k}{\sqrt{m}}$
$k=s \sqrt{m}=676 \sqrt{64}=5408$
(b) $520=\frac{5408}{\sqrt{m}}$
$s=\frac{5408}{\sqrt{m}}$

$$
\begin{aligned}
& m=\left(\frac{5408}{520}\right)^{2} \\
& m=108.16 \mathrm{~g}
\end{aligned}
$$

Ans: (a) $s=\frac{5408}{\sqrt{m}}$ (b) $m=108.16 \mathrm{~g}$
Solutions:
(a) $P=8 r^{2}$
$P=k r^{2}$
$P=8 r^{2}$
(b) Percentage increase $=1500 \%$

$$
P_{\text {new }}=8(4 r)^{2}
$$

$$
=16 \mathrm{~V}
$$

Percentage increase

$$
\begin{aligned}
& =\frac{16 P-P}{P} \times 100 \\
& =1500 \%
\end{aligned}
$$

Ans: (a) $8 r^{2}$ (b) 1500%
4 Solutions:
(a) $8=\frac{k}{x^{2}}$
(b) $\frac{24}{b^{3}}=\frac{a}{(0.5 b)^{3}}$
New $y=\frac{8 x^{2}}{(2 x)^{2}} \quad \frac{24}{b^{3}}=\frac{a}{0.125 b^{3}}$

$$
y=2
$$

$$
a=3
$$

Ans: (a) 2 (b) 3
5 Ans: (a) v and t are in inverse proportion because the product $v t$ is always a constant.
(b) Distance from home to $\mathrm{JB}=200 \mathrm{~km}$

Time taken $=3.5 h$

$$
\text { His speed }=\frac{200}{3.5}=57.143 \mathrm{~km} / \mathrm{h} \text { (3d.p) }
$$

(c) Time taken $=\frac{200}{80}=2.5 \mathrm{~h}$

He must set off at $11: 30 \mathrm{PM}$

