Sec3 A Math WA3 Mock Exam

Hello my beloved Sec 3s!

Dylan here!

I have created these mock tests for y'all as I found out that I had lack of practice questions when I was in Secondary School.

The difference in the standards between the homework and test questions are way too different.

When my students sit through a Mock Exam prior to their tests, they get use to the time pressure, and they get exposed to the level of the exam questions.

That is the reason why they score really well.

I have a strong desire to help as many students as possible in this community and I want you guys to perform to your best ability.

That is why I want to share these resources with everyone here.

I have purposefully selected questions that cover different scopes in the chapters.

Yes! If you can do these questions, you can certainly do well in your WA3!

Take this test in a quiet environment.

Answers are included at the back, so please don't refer :)

Jiayou!

Love,

Dylan

Coordinate Geometry

Linear Law

1	Answer the whole of this question on a piece of graph paper.								
	The table shows experimental values of two variables, x and y , which are connected								
	by an equation of the form $y - b\sqrt{x} = \frac{a}{\sqrt{x}}$, where <i>a</i> and <i>b</i> are constants.								
		x	1	2	3	4	5	6	
		у	5	4.95	5.20	5.50	5.81	6.12	
	(a) Using a scale of 1 cm to represent 1 unit on the $(y\sqrt{x})$ -axis and 2 cm to represent								
	1 unit on the x-axis, plot $y\sqrt{x}$ against x and draw a straight line graph. [4]								
	(b) Using your graph, estimate the value of <i>a</i> and of <i>b</i> . [3]								
	(c) Using your graph, estimate the value of y when $x = 4.75$. [2]						[2]		
2	The variables x and y are related in such a way that, when $\lg y$ is plotted against x^2 , a								
	straight line passing through the point $A(0, a)$ and the point $B(4, 10)$ is obtained, as								
	shown in the diagram.								
	$\lg y$								
	B(4, 10)								
	A(0, a)								
	0 x ²								
	Given that the line has a gradient of 2, find								
	(a) the value of a,						[2]		
	(b) the expression for y in terms of x ,					[2]			
	(c) the values of x when $y = 1000$. [3]						[3]		

🕽 🗲 Paradigm

Circles

1	(a) Write down the equation of the circle with centre $A(8, 2)$ and radius $\sqrt{80}$.	[1]			
	(b) This circle intersects the y-axis at points P and Q . Find the length PQ .	[3]			
	(c) A second circle, centre B , also passes through P and Q .				
	State the <i>y</i> -coordinate of <i>B</i> .	[1]			
	(d) Given that the x-coordinate of B is negative and that the radius of the second circle				
	is 5, find the x-coordinate of B.	[3]			
2	The equation of a circle C is $x^2 + 6x + y^2 - 10y = 66$.				
	(a) Find the radius and the coordinates of the centre of the circle.	[2]			
	(b) Given that PQ is the diameter of the circle, where P is the point (5, 11), find the				
	coordinates of the point Q .	[3]			
	(c) Find the equation of the circle C_1 , which is a reflection of the circle C in the l				
	x = -1.	[2]			
3	A circle C_1 has the equation $(x - 4)^2 + (y - 6)^2 = 100$ and another circle C_2 h	has the			
	equation $x^2 + y^2 + 2x - 16y + 49 = 0$.				
	(a) Find the coordinates of the centre of the circle C_2 and its radius.	[4]			
	(b) Show that C_2 lies completely inside of C_1 ,	[3]			
L					

Answer Key

Coordinate Geometry

1	(a)		(b)
	AB = BC		BD is the perpendicular bisector of AC .
			$MdptAC = (\frac{0+20}{2}, \frac{5+15}{2})$
	$\sqrt{(8-0)^2 + (14-5)^2} = \sqrt{(k-8)^2 + (14-5)^2}$	$(5-14)^2$	= (10,10)
	$145 = k^2 - 16k + 65$		
	$k^2 - 16k - 80 = 0$		$GradientAC = \frac{15-5}{20-0}$
	(k+4)(k-20) = 0		$=\frac{1}{2}$
	k=-4 (reject) or 20		2 Therefore Gradient $BD = -2$
			Equation of BD :
			y - 10 = -2(x - 10) y = -2x + 30
	(c) At <i>D</i> , sub $y = 0$,		(d)
	0 = -2x + 30		
	x = 15		Area $ABC = \frac{1}{2} \begin{vmatrix} 0 & 20 & 8 & 0 \\ 5 & 15 & 14 & 5 \end{vmatrix}$
	D = (15, 0)		1.00.000.00.00.100.1001
1	D = (13, 0)		$=\frac{1}{2}[0+280+40-0-120-100]$
1			=50 units ²
			Area $ABCD = \frac{1}{2} \begin{vmatrix} 0 & 15 & 20 & 8 & 0 \\ 5 & 0 & 15 & 14 & 5 \end{vmatrix}$
			Area $ABCD = \frac{1}{2} 5 \ 0 \ 15 \ 14 \ 5 $
			$=\frac{1}{2}[0++225+280+40-0-120-0-75]$
			2
			$=175 \text{ units}^2$
2	(a) 1	$(\mathbf{b})\\ M_{BC} = -2$	(c) Area of <i>ABDC</i>
	$M_{AC} = \frac{1}{2}$	Equation of BC :	
	$M_{BD} = \frac{1}{2}$	y = 2x + c	$=\frac{1}{2}\begin{vmatrix}3 & 7 & 13\frac{1}{2} & 5\frac{1}{2} & 3\\2 & 4 & 11 & 7 & 2\end{vmatrix}$
	2	•	2 2 4 11 7 2
	Equation of BD:	At(7,4)	= 22.5units
	Equation of <i>BD</i> : $y = \frac{1}{2}x + e$	4 = -2(7) + c	
	$y = \frac{1}{2}x + \varphi$	4 = -2(7) + c $c = 18$	= 22.5units Area of <i>BCD</i>
	$y = \frac{1}{2}x + \omega$ At $\left(13\frac{1}{2}, 11\right)$	4 = -2(7) + c c = 18 y = -2x + 18	= 22.5 units Area of <i>BCD</i> = $\frac{1}{2} \begin{vmatrix} 5\frac{1}{2} & 7 & 13\frac{1}{2} & 5\frac{1}{2} \end{vmatrix}$
	$y = \frac{1}{2}x + \omega$ At $\left(13\frac{1}{2}, 11\right)$	4 = -2(7) + c c = 18 y = -2x + 18	= 22.5 units Area of <i>BCD</i> = $\frac{1}{2} \begin{vmatrix} 5\frac{1}{2} & 7 & 13\frac{1}{2} & 5\frac{1}{2} \end{vmatrix}$
	$y = \frac{1}{2}x + 6\theta$ At $\left(13\frac{1}{2}, 11\right)$ $11 = \frac{1}{2}\left(13\frac{1}{2}\right) + c$	4 = -2(7) + c c = 18 y = -2x + 18 $-2x + 18 = \frac{1}{2}x + \frac{1}{2}x +$	= 22.5 units Area of <i>BCD</i> = $\frac{1}{2} \begin{vmatrix} 5\frac{1}{2} & 7 & 13\frac{1}{2} & 5\frac{1}{2} \end{vmatrix}$
	$y = \frac{1}{2}x + 6\theta$ At $\left(13\frac{1}{2}, 11\right)$ $11 = \frac{1}{2}\left(13\frac{1}{2}\right) + c$	4 = -2(7) + c c = 18 y = -2x + 18 $-2x + 18 = \frac{1}{2}x + \frac{1}{2}x +$	= 22.5 units Area of <i>BCD</i> $= \frac{1}{2} \begin{vmatrix} 5\frac{1}{2} & 7 & 13\frac{1}{2} & 5\frac{1}{2} \\ 7 & 4 & 11 & 7 \end{vmatrix}$ = 15 units Ratio
	$y = \frac{1}{2}x + \omega$ At $\left(13\frac{1}{2}, 11\right)$ $11 = \frac{1}{2}\left(13\frac{1}{2}\right) + c$ $c = \frac{17}{4}$	4 = -2(7) + c c = 18 y = -2x + 18 $-2x + 18 = \frac{1}{2}x + \frac{1}{2}x$ $x = 5\frac{1}{2}$	$= 22.5 \text{ units}$ Area of <i>BCD</i> $= \frac{1}{2} \begin{vmatrix} 5\frac{1}{2} & 7 & 13\frac{1}{2} & 5\frac{1}{2} \\ 7 & 4 & 11 & 7 \end{vmatrix}$ $= 15 \text{ units}$
	$y = \frac{1}{2}x + 6\theta$ At $\left(13\frac{1}{2}, 11\right)$ $11 = \frac{1}{2}\left(13\frac{1}{2}\right) + c$	4 = -2(7) + c c = 18 y = -2x + 18 $-2x + 18 = \frac{1}{2}x + \frac{1}{2}x$ $x = 5\frac{1}{2}$ y = 7	= 22.5 units Area of <i>BCD</i> $= \frac{1}{2} \begin{vmatrix} 5\frac{1}{2} & 7 & 13\frac{1}{2} & 5\frac{1}{2} \\ 7 & 4 & 11 & 7 \end{vmatrix}$ = 15 units Ratio
	$y = \frac{1}{2}x + \omega$ At $\left(13\frac{1}{2}, 11\right)$ $11 = \frac{1}{2}\left(13\frac{1}{2}\right) + c$ $c = \frac{17}{4}$	4 = -2(7) + c c = 18 y = -2x + 18 $-2x + 18 = \frac{1}{2}x + \frac{1}{2}x$ $x = 5\frac{1}{2}$	= 22.5 units Area of <i>BCD</i> $= \frac{1}{2} \begin{vmatrix} 5\frac{1}{2} & 7 & 13\frac{1}{2} & 5\frac{1}{2} \\ 7 & 4 & 11 & 7 \end{vmatrix}$ = 15 units Ratio
3	$y = \frac{1}{2}x + \varphi$ At $\left(13\frac{1}{2}, 11\right)$ $11 = \frac{1}{2}\left(13\frac{1}{2}\right) + c$ $c = \frac{17}{4}$ $y = \frac{1}{2}x + \frac{17}{4}$	4 = -2(7) + c c = 18 y = -2x + 18 $-2x + 18 = \frac{1}{2}x + \frac{1}{2}x$ $x = 5\frac{1}{2}$ y = 7	$= 22.5 \text{ units}$ Area of <i>BCD</i> $= \frac{1}{2} \begin{vmatrix} 5\frac{1}{2} & 7 & 13\frac{1}{2} & 5\frac{1}{2} \\ 7 & 4 & 11 & 7 \end{vmatrix}$ $= 15 \text{ units}$ Ratio $= 3:2$
3	$y = \frac{1}{2}x + \omega$ At $\left(13\frac{1}{2}, 11\right)$ $11 = \frac{1}{2}\left(13\frac{1}{2}\right) + c$ $c = \frac{17}{4}$	4 = -2(7) + c c = 18 y = -2x + 18 $-2x + 18 = \frac{1}{2}x + \frac{1}{2}x$ $x = 5\frac{1}{2}$ y = 7	$= 22.5 \text{ units}$ Area of <i>BCD</i> $= \frac{1}{2} \begin{vmatrix} 5\frac{1}{2} & 7 & 13\frac{1}{2} & 5\frac{1}{2} \\ 7 & 4 & 11 & 7 \end{vmatrix}$ $= 15 \text{ units}$ Ratio $= 3:2$ (b)
3	$y = \frac{1}{2}x + \varphi$ At $\left(13\frac{1}{2}, 11\right)$ $11 = \frac{1}{2}\left(13\frac{1}{2}\right) + c$ $c = \frac{17}{4}$ $y = \frac{1}{2}x + \frac{17}{4}$	4 = -2(7) + c c = 18 y = -2x + 18 $-2x + 18 = \frac{1}{2}x + \frac{1}{2}x$ $x = 5\frac{1}{2}$ y = 7	$= 22.5 \text{ units}$ Area of <i>BCD</i> $= \frac{1}{2} \begin{vmatrix} 5\frac{1}{2} & 7 & 13\frac{1}{2} & 5\frac{1}{2} \\ 7 & 4 & 11 & 7 \end{vmatrix}$ $= 15 \text{ units}$ Ratio $= 3:2$ (b)
3	$y = \frac{1}{2}x + \varphi$ At $\left(13\frac{1}{2}, 11\right)$ $11 = \frac{1}{2}\left(13\frac{1}{2}\right) + c$ $c = \frac{17}{4}$ $y = \frac{1}{2}x + \frac{17}{4}$	4 = -2(7) + c c = 18 y = -2x + 18 $-2x + 18 = \frac{1}{2}x + \frac{1}{2}x$ $x = 5\frac{1}{2}$ y = 7	$= 22.5 \text{ units}$ Area of <i>BCD</i> $= \frac{1}{2} \begin{vmatrix} 5\frac{1}{2} & 7 & 13\frac{1}{2} & 5\frac{1}{2} \\ 7 & 4 & 11 & 7 \end{vmatrix}$ $= 15 \text{ units}$ Ratio $= 3:2$

$m_{AB} = \frac{-4-5}{5-(-4)}$	
=-1	
$m_{CD} = 1$	
equation of CD: $y - 11 = 1(x - 8)$	
y = x + 3	
equation of AB: $y-5=-1(x-(-4))$	
y = -x + 1	
x+3 = -x+1	
x = -1	
y=2	
$\therefore D(-1,2)$	
$m_{BC} = \frac{11 - (-4)}{8 - 5}$	
=5	
$m_{AE} = -\frac{1}{5}$	
equation of AE: $y - 5 = -\frac{1}{5}(x - (-4))$	
$y = -\frac{1}{5}x + \frac{21}{5}$	
$x+3 = -\frac{1}{5}x + \frac{21}{5}$	
5x + 15 = -x + 21	
6x = 6	
<i>x</i> = 1	
<i>y</i> = 4	
$\therefore F(1,4)$	

Linear Law

🕽 🗲 Paradigm

Circles

1	(a)		(b)	
	Eqn of circle: $(x - 8)^2 + (y)^2$	$(-2)^2 = 80$	$x = 0, 64 + y^2 - 4y + 4 = 80$	
			$y^2 - 4y - 12 = 0$ (y-6)(y+2) = 0	
			y = 6 or -2	
			,	
			Length $PQ = 6 - (-2)$	
	(a) At accordinate of $P = 2$		= 8 units (d)	
	(c) <i>y</i> -coordinate of $B = 2$		Let B be $(k,2)$	
			Length $BP = 5$	
			$\sqrt{(k-0)^2+(2-6)^2}=5$	
			$k^2 + 16 = 25$	
			$k^{2} = 9$	
			k = 3(reject) or -3	
2	(a)	<u>(b)</u>	(c)	-
	$x^2 + 6x + y^2 - 10y = 66$	$\overrightarrow{\text{Midpoint of } PQ} = c$		0
	Centre = $(-3, 5)$,	$\left(\frac{5+a}{2},\frac{11+b}{2}\right) = (-b)$	$(x-1)^2 + (y-5)^2 = 100.$	
	$radius = \sqrt{9 + 25 - (-66)}$	$\therefore \frac{5+a}{2} = -3 \Rightarrow a =$	11	
	=10units	$\frac{1}{2} = -3 \Rightarrow u =$		
		$\frac{11+b}{2} = 5 \Rightarrow b = -3$	1	
		Q(-11,-1)		
3	(a)		(b)	
	$x^2 + y^2 + 2x - 16y + 49 = 0$		let the centres of C_1 and C_2 be O_1 and O_2 respective	ly
	$(x+1)^{2} + (y-8)^{2} - 1 - 64 + 49 = 0$		$O_1 O_2 = \sqrt{(8-6)^2 + (-1-4)^2}$	
	$(x+1)^2 + (y-8)^2 = 16$		$=\sqrt{29}$	
	centre $=(-1,8)$		since $\sqrt{29} + 4 < 10$,	
	radius = 4 units		therefore C_2 lies completely inside C_1 .	