Sec3 A Math WA3 Mock Exam

Hello my beloved Sec 3s!
Dylan here!
I have created these mock tests for y'all as I found out that I had lack of practice questions when I was in Secondary School.

The difference in the standards between the homework and test questions are way too different.
When my students sit through a Mock Exam prior to their tests, they get use to the time pressure, and they get exposed to the level of the exam questions.

That is the reason why they score really well.
I have a strong desire to help as many students as possible in this community and I want you guys to perform to your best ability.

That is why I want to share these resources with everyone here.
I have purposefully selected questions that cover different scopes in the chapters.
Yes! If you can do these questions, you can certainly do well in your WA3!
Take this test in a quiet environment.
Answers are included at the back, so please don't refer :)
Jiayou!

Love,
Dylan

Coordinate Geometry

$\mathbf{1}$ The diagram shows an isosceles triangle $A B C$ with vertices $A(0,5), B(8,14)$ and $C(k, 15)$.

(a) Find the value of k.
(b) D is a point on the x-axis such that $A D=C D$. Find the equation of $B D$.
(c) Find the coordinates of D.
(d) Find the areas of triangle $A B C$ and of quadrilateral $A B C D$.

2 The diagram shows a triangle $A B C$ in which the coordinates of the points A and C are $(3,2)$ and $(7,4)$ respectively. $\angle A C B=90^{\circ}$. The line $B D$ is parallel to $A C$ and D is the point $\left(13 \frac{1}{2}, 11\right)$.The lines $B A$ and $D C$ are extended to meet at E.

Find
(a) the equation of line $B D$,
(b) the coordinates of B,
(c) the ratio of the area of the quadrilateral $A B D C$ to the area of the triangle $B C D$. [3]

3

The vertices of the triangle $A B C$ have coordinates $(-4,5),(5,-4)$ and $(8,11)$ respectively. $A E$ is perpendicular to $B C, C D$ is perpendicular to $A B$, and $A E$ and $C D$ meet at F.
(a) Find the coordinates of D and of F.
(b) Find the area of triangle $A B C$.

Linear Law

1 Answer the whole of this question on a piece of graph paper.

The table shows experimental values of two variables, x and y, which are connected by an equation of the form $y-b \sqrt{x}=\frac{a}{\sqrt{x}}$, where a and b are constants.

x	1	2	3	4	5	6
y	5	4.95	5.20	5.50	5.81	6.12

(a) Using a scale of 1 cm to represent 1 unit on the $(y \sqrt{x})$-axis and 2 cm to represent 1 unit on the x-axis, plot $y \sqrt{x}$ against x and draw a straight line graph.
(b) Using your graph, estimate the value of a and of b.
(c) Using your graph, estimate the value of y when $x=4.75$.

2
The variables x and y are related in such a way that, when $\lg y$ is plotted against x^{2}, a straight line passing through the point $\mathrm{A}(0, a)$ and the point $B(4,10)$ is obtained, as shown in the diagram.

Given that the line has a gradient of 2 , find
(a) the value of a,
(b) the expression for y in terms of x,
(c) the values of x when $y=1000$.

Circles

1	(a) Write down the equation of the circle with centre $A(8,2)$ and radius $\sqrt{80}$. (b) This circle intersects the y-axis at points P and Q. Find the length $P Q$. (c) A second circle, centre B, also passes through P and Q. State the y-coordinate of B. (d) Given that the x-coordinate of B is negative and that the radius of the second circle is 5 , find the x-coordinate of B.
2	The equation of a circle C is $x^{2}+6 x+y^{2}-10 y=66$. (a) Find the radius and the coordinates of the centre of the circle. (b) Given that $P Q$ is the diameter of the circle, where P is the point $(5,11)$, find the coordinates of the point Q. (c) Find the equation of the circle C_{1}, which is a reflection of the circle C in the line $x=-1$.
3	A circle C_{1} has the equation $(x-4)^{2}+(y-6)^{2}=100$ and another circle C_{2} has the equation $x^{2}+y^{2}+2 x-16 y+49=0$. (a) Find the coordinates of the centre of the circle C_{2} and its radius. (b) Show that C_{2} lies completely inside of C_{1},

Answer Key

Coordinate Geometry

1	(a) $\begin{aligned} & A B=B C \\ & \sqrt{(8-0)^{2}+(14-5)^{2}}=\sqrt{(k-8)^{2}+(15-14)^{2}} \\ & 145=k^{2}-16 k+65 \\ & k^{2}-16 k-80=0 \\ & (k+4)(k-20)=0 \\ & k=-4 \text { (reject) or } 20 \end{aligned}$ (c) $\begin{aligned} & \text { At } D, \text { sub } y=0, \\ & \begin{aligned} 0 & =-2 x+30 \\ x & =15 \\ D & =(15,0) \end{aligned} \end{aligned}$	(b) $B D$ is the perpendicular bisector of $A C$. $\begin{aligned} & \text { MdptAC }=\left(\frac{0+20}{2}, \frac{5+15}{2}\right) \\ & =(10,10) \end{aligned}$ GradientAC $=\frac{15-5}{20-0}$ $=\frac{1}{2}$ Therefore Gradient $B D=-2$ Equation of $B D$: $\begin{aligned} & y-10=-2(x-10) \\ & y=-2 x+30 \end{aligned}$ (d) $\begin{aligned} \text { Area } \left.\begin{array}{rl} A B C & =\frac{1}{2}\left\|\begin{array}{llcc} 0 & 20 & 8 & 0 \\ 5 & 15 & 14 & 5 \end{array}\right\| \\ & =\frac{1}{2}[0+280+40-0-120-100] \\ & =50 \text { units }^{2} \\ \text { Area } \begin{array}{rl} A B C D & =\frac{1}{2}\left\|\begin{array}{lllll} 0 & 15 & 20 & 8 & 0 \\ 5 & 0 & 15 & 14 & 5 \end{array}\right\| \\ & =\frac{1}{2}[0++225+280+40-0-120-0-75] \\ & =175 \text { units }^{2} \end{array} \end{array} . \begin{array}{rl} \end{array}\right] \end{aligned}$
2	(a) (b) $\begin{aligned} & M_{A C C}=\frac{1}{2} \\ & M_{B A D}=\frac{1}{2} \end{aligned}$ $M_{B C}=-2$ Equation of $B C$: Equatióríof $B D_{\text {A }}$ $\begin{aligned} & y=\frac{1}{2} x+\theta \\ & \operatorname{At}\left(13 \frac{1}{2}, 11\right) \\ & 11=\frac{1}{2}\left(13 \frac{1}{2}\right)+c \\ & c=\frac{17}{4} \\ & y=\frac{1}{2} x+\frac{17}{4} \end{aligned}$ $\begin{aligned} & y=2 x+c \\ & \operatorname{At}(7,4) \\ & 4=-2(7)+c \\ & c=18 \\ & y=-2 x+18 \\ & -2 x+18=\frac{1}{2} x+\frac{17}{4} \\ & x=5 \frac{1}{2} \\ & y=7 \\ & B\left(5 \frac{1}{2}, 7\right) \end{aligned}$	(c) Area of $A B D C$ $\begin{aligned} & =\frac{1}{2}\left\|\begin{array}{ccccc} 3 & 7 & 13 \frac{1}{2} & 5 \frac{1}{2} & 3 \\ 2 & 4 & 11 & 7 & 2 \end{array}\right\| \\ & =22.5 \mathrm{units} \end{aligned}$ Area of $B C D$ $\begin{aligned} & =\frac{1}{2}\left\|\begin{array}{lllr} 5 \frac{1}{2} & 7 & 13 \frac{1}{2} & 5 \frac{1}{2} \\ 7 & 4 & 11 & 7 \end{array}\right\| \\ & =15 \text { units } \\ & \text { Ratio } \\ & =3: 2 \end{aligned}$
3	(a)	(b) $\begin{aligned} \text { area } & =\frac{1}{2}\left\|\begin{array}{cccc} -4 & 5 & 8 & -4 \\ 5 & -4 & 11 & 5 \end{array}\right\| \\ & =81 \text { units }^{2} \end{aligned}$

$$
\begin{aligned}
m_{A B} & =\frac{-4-5}{5-(-4)} \\
& =-1 \\
m_{C D} & =1
\end{aligned}
$$

equation of $C D: y-11=1(x-8)$

$$
y=x+3
$$

equation of $A B$: $y-5=-1(x-(-4))$

$$
\begin{aligned}
y & =-x+1 \\
x+3 & =-x+1 \\
x & =-1 \\
y & =2 \\
& \therefore D(-1,2) \\
m_{B C} & =\frac{11-(-4)}{8-5} \\
& =5 \\
m_{A E} & =-\frac{1}{5}
\end{aligned}
$$

equation of $A E: y-5=-\frac{1}{5}(x-(-4))$

$$
\begin{aligned}
y & =-\frac{1}{5} x+\frac{21}{5} \\
x+3 & =-\frac{1}{5} x+\frac{21}{5} \\
5 x+15 & =-x+21 \\
6 x & =6 \\
x & =1 \\
y & =4 \\
& \therefore F(1,4)
\end{aligned}
$$

Linear Law

Circles

1	(a) Eqn of circle: $(x-8)^{2}+(y-2)^{2}=80$ (c) y-coordinate of $B=2$	(b) $\begin{aligned} & x=0, \quad 64+y^{2}-4 y+4=80 \\ & y^{2}-4 y-12=0 \\ & (y-6)(y+2)=0 \\ & y=6 \text { or }-2 \end{aligned}$ (d) Let B be $(k, 2)$ $\begin{aligned} \text { Length } B P & =5 \\ \sqrt{(k-0)^{2}+(2-6)^{2}} & =5 \\ k^{2}+16 & =25 \\ k^{2} & =9 \\ k & =3 \text { (reject) or }-3 \end{aligned}$
2	(a) (b) $\begin{aligned} & x^{2}+6 x+y^{2}-10 y=66 \\ & \text { Centre }=(-3,5), \\ & \begin{aligned} \text { radius } & =\sqrt{9+25-(-66)} \\ & =10 \text { units } \end{aligned} \end{aligned}$ $\begin{aligned} & \left(\frac{5+a}{2}, \frac{11+b}{2}\right)= \\ & \therefore \frac{5+a}{2}=-3 \Rightarrow a \\ & \frac{11+b}{2}=5 \Rightarrow b=- \\ & Q(-11,-1) \end{aligned}$	(c) New centre $=(1,5), r=10$ 5) $(x-1)^{2}+(y-5)^{2}=100$
3	(a) $\begin{aligned} x^{2}+y^{2}+2 x-16 y+49 & =0 \\ (x+1)^{2}+(y-8)^{2}-1-64+49 & =0 \\ (x+1)^{2}+(y-8)^{2} & =16 \\ \text { centre } & =(-1,8) \\ \text { radius } & =4 \text { units } \end{aligned}$	(b) let the centres of C_{1} and C_{2} be O_{1} and O_{2} respectively $\begin{aligned} O_{1} O_{2} & =\sqrt{(8-6)^{2}+(-1-4)^{2}} \\ & =\sqrt{29} \\ \text { since } & \sqrt{29}+4<10, \end{aligned}$ therefore C_{2} lies completely inside C_{1}.

