7 MUST KNOW QUESTIONS TO CONQUER Simultaneous Equation

1	Solve the following simultaneous equations. $\begin{gathered} 2 x=9-y \\ 3 x-2 y=24 \end{gathered}$
2	Solve the simultaneous equations. $\begin{aligned} & 2 x-3 y=12 \\ & 4 x+5 y=-9 \end{aligned}$
3	Solve the following simultaneous equations. $\begin{gathered} \frac{x}{3}+\frac{y}{4}=\frac{1}{2} \\ -4 y-5 x=6 \end{gathered}$
4	Jennifer drove 4 hours at an average speed of $x \mathrm{~km} / \mathrm{h}$ and then for 6 hours at an average speed of $y \mathrm{~km} / \mathrm{h}$. She drove a total distance of 816 km . (a) Write down an equation in terms of x and y, and show that it simplifies to $2 x+3 y=408$ (b) Kenny drove for 3 hours at an average speed of $x \mathrm{~km} / \mathrm{h}$ and then for 5 hours at an average speed of $y \mathrm{~km} / \mathrm{h}$ He drove a total distance of 654 km . Write down an equation, in terms of x and y, to represent this information. (c) Solve these two equations to find the value of x and of y.
5	A pair of simultaneous equations is given by $2 y=5 x+8 \text { and } 3 x+2 y=8$ The table of values for both equations are shown below. (a) Find the value of a. (b) Plot the graphs of $2 y=5 x+8$ and $3 x+2 y=8$. (c) Hence, find the solution to the simultaneous equations $2 y=5 x+8$ and $3 x+2 y=8$.
6	(a) (i) Solve the simultaneous equations $x+3 y=5$ and $7 x-6 y=-19$. (ii) Name the method you use to solve (a)(i). (b) Explain why the simultaneous equations $2 a+b=4$ and $4 a+2 b=8$ have infinitely many solutions. (c) A pair of simultaneous equation is given by $3 a-b=12 \text { and } \frac{a}{3}-\frac{b}{4}=2$ Amy claims that the solution to the simultaneous equations is $a=4.8, b=2.4$. Explain how she can check if her answer is correct. Hence, explain whether her answer is correct.

7 (a) if $x=1$ and $y=2$ is the solution of the simultaneous equations

$$
\begin{gathered}
a x-b y=1 \\
a y+b x=17
\end{gathered}
$$

find the value of a and b.
(b) Jason and Benson are walking at different speeds.

If they walk in the same direction, Jason would be 3 km in front of Benson after 3 hours. If they walk in opposite directions, Jason would be 10 km away from Benson after 2 hours.
Let Jason's speed be $x \mathrm{~km} / \mathrm{h}$ and Benson's speed be $y \mathrm{~km} / \mathrm{h}$.
Assuming that their speeds are constant, find the speed of Jason and Benson.

Answer Key

1	Solution: $\begin{gather*} 2 x+y=9 \\ 4 x+2 y=18 \ldots \text { (1) } \\ 3 x-2 y=24 \ldots(2) \tag{2}\\ (1)+(2), \\ 7 x=42 \\ x=6 \\ y=-3 \end{gather*}$
2	Solution: $\begin{gathered} y=-3, x=1.5 \\ (2 x-3 y=12---(1) \\ (1) \times 2 \\ 4 x-6 y=24--(2) \\ 4 x+5 y=-9--(3) \end{gathered}$ (2) - (3): $\begin{gathered} 4 x-6 y-(4 x+5 y)=24-(-9)----\mathrm{M} 1 \text { (substitution or elimination) } \\ 4 x-6 y-4 x-5 y=33 \\ -11 y=33 \\ y=-3 \\ x=1.5 \end{gathered}$
3	Solution: $\begin{align*} & y=-54, x=42 \\ & \frac{x}{3}+\frac{y}{4}=\frac{1}{2} \ldots(1) \tag{1}\\ & -4 y-5 x=6 \ldots \tag{2} \end{align*}$ Sub (3) into (2) From (1), $\begin{aligned} & -4 y-5\left(\frac{6-3 y}{4}\right)=6 \\ & -16 y-30+15 y=24 \\ & \therefore y=-54----(4) \end{aligned}$ $\begin{align*} & 4 x+3 y=6 \\ & x=\frac{6-3 y}{4}--- \tag{3} \end{align*}$ Sub (4) into (1) $\frac{x}{3}+\frac{(-54)}{4}=\frac{1}{2}$ Sub (3) into (2) $\frac{x}{3}=\frac{56}{4}$ $\begin{aligned} & -4 y-5\left(\frac{6-3 y}{4}\right)=6 \\ & -16 y-30+15 y=24 \\ & \therefore y=-54---(4) \end{aligned}$ $\therefore x=42$
4	Solutions: (a) $\begin{aligned} & 4 x+6 y=816 \\ & 2 x+3 y=408 \end{aligned}$ (b) $3 x+5 y=654$ (c) $\begin{align*} & 2 x+3 y=408 \\ & 3 x+5 y=654--(1) \\ & (1) \times 3 \Rightarrow 6 x+9 y=1224 \tag{4} \end{align*}$ (2) $\times 2 \Rightarrow 6 x+10 y=1308$ \qquad (4) $-(3) \Rightarrow(6 x+10 y)-(6 x+9 y)=1308-1224$ $y=84$

$$
\begin{aligned}
& \text { Substitute } y=84 \text { into }(1) \\
& 2 x+3(84)=408 \\
& 2 x=408-25 \\
& =156 \\
& x=\frac{156}{2} \\
& =78
\end{aligned}
$$

Ans: (b) $3 x+5 y=654$ (c) $y=84, x=78$
5 Solutions:
(a) $a=7$
When $x=-2$, $3(-2)+2 y=8$
$-6+2 y=8$
$2 y=8+6$
$2 y=14$
$y=7$
$\therefore a=7$
(b)

(c) $x=0, y=4$

Ans: (a) 7 (c) $x=0, y=4$
6 Solutions:
(a)(i) $y=2, x=-1$

$$
\begin{align*}
& x+3 y=5--(\\
& 7 x-6 y=-19 \tag{2}
\end{align*}
$$

By Elimination:

$$
\begin{aligned}
& 7 x+21 y-(7 x-6 y)=35-(-19) \\
& 7 x+21 y-7 x+6 y=35+19 \\
& \qquad 27 y=54 \\
& \quad y=2 \\
& \text { Sub } y=2 \text { into }(1): \\
& x+3(2)=5 \\
& x+6=5 \\
& \quad x=-1
\end{aligned}
$$

(ii) Elimination or substitution (based on answer in (a)(i)
(b) This is because when the equation $2 a+b=4$ is multiplied by $2,2(2 a+b)=2(4) 4 a+2 b=8$
The result is the second equation, i.e., they are equivalent.
(c) She can check if her answer is correct by
substituting the values of x and y into both equations.
Her answer is correct if the values satisfy both equations.
$3(4.8)-2.4=14.4-24.4=12$
$\therefore a=4.8, b=2.4$ satisfies the equation $3 a-b=12$.

$$
\frac{4.8}{3}-\frac{2.4}{4}=1.6-0.6=1
$$

$\therefore a=4.8, b=2.4$ does not satisfy the equation $\frac{a}{3}-\frac{b}{4}=2$.
Her answer is not correct as $a=4.8, b=2.4$ does not satisfy $\frac{a}{3}-\frac{b}{4}=2$.

Solutions:

(a) $a=7, b=3$

Substitute $x=1$ and $y=2$ into each equation.
$a(1)-b(2)=1$
$a-2 b=1---(1)$
$a(2)+b(1)=17$
$2 a+b=17$--- (2)
From (1):
$a=1+2 b--$ (3)
Sub (3) into (2):
$2(1+2 b)+b=17$
$2+4 b+b=17$
$5 b=15$
$b=3$
Sub $b=3$ into (3):
$a=1+2(3)=7$
$a=7, b=3$
Ans: (a) $a=7, b=3$ (b) Jason's speed $=3 \mathrm{~km} / \mathrm{h}$; Benson's speed $=2 \mathrm{~km} / \mathrm{h}$

