

Name:

School:

Target Grade:

MOCK O LEVEL PAPER 2023 SECONDARY

READ THESE INSTRUCTIONS FIRST

INSTRUCTIONS TO CANDIDATES

1. Find a nice comfortable spot without distraction.

2. Be fully focused for the whole duration of the test.

3. Speed is KING. Finish the paper as soon as possible then return-back to Check Your Answers.

4. As you are checking your answers, always find ways to VALIDATE your answer.

5. Avoid looking through line by line as usually you will not be able to see your Blind Spot.

6. If there is no alternative method, cover your answer and REDO the question.

7. Give non-exact answers to 3 significant figures, or 1 decimal place for angles in degree, or 2 decimal place for \$\$\$, unless a different level of accuracy is specified in the question.

Wish you guys all the best in this test.

You can do it.

I believe in you.

Team Paradigm

PARADIGM

[Turn Over]

MATHEMATICAL FORMULAE

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\cos ec^2 A = 1 + \cot^2 A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2 \sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for ΔABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
Area of $\Delta = \frac{1}{2}ab \sin C$

A Maths O Level Mock Paper 2023

1	[Nature of Roots]	
	 (a) Find the range of values of k for which (k - 3)x² + 4x + k is always positive for all real values of x. (b) Show that the roots of the equation 6x² + 4(m - 1) = 2(x + m) are real if m ≤ 2¹/₁₂. 	[2]
2	[Surds]	
	(a) Express $\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\right)^2$ in the form $a + b\sqrt{15}$, where <i>a</i> and <i>b</i> are integers.	[2]
3	[Exponential]	
	An object is heated until it reaches a temperature of T_0 °C. It is then allowed to cool. Its temperature, T °C, when it has been cooled for <i>n</i> minutes, is given by the equation $T = 33 + 12e^{-\frac{3}{4}n}$.	
	 (i) Find the value of T₀. (ii) Find the value of n when t = 37°C. (iii) Find the value of n at which the rate of decrease of temperature is 0.67°C/minute. 	[1] [1] [1]
	(iv) Explain why the temperature of the object is always greater than 33°C.	[1]
	(v) Sketch the graph of $T = 33 + 12e^{-\frac{3}{4}n}$.	[1]
4	[Logarithm]	
	(a) Find the value(s) of y that satisfy the equation $\log_4(2y) = \log_{16}(y-3) + 3\log_9 3$	[3]
	(b) Solve the equation $3\log_x 3 = 8 - 4\log_3 x$.	[3]
5	[Polynomial]	
	 (a) Factorise completely 27a³ - 125b³. (b) It is given that 3x³ + 3x² - 11x - 6 when divided by x + a has a remainder 	[2]
	 that is half the remainder when it is divided by x - a. (i) Show that 3a³ - a² = 11a - 2. (ii) Solve 3a³ - a² = 11a - 2, giving your answer to two decimal places where necessary. 	[2] [3]
	[Partial Fraction]	
	(c) Express $\frac{4x^3+x^2+6}{(x-2)(x^2+2)}$ in partial fractions.	[4]

6	[Binomial Theorem]	
	(a) By considering the general term in the binomial expansion of $\left(kx - \frac{1}{x^3}\right)^7$, where <i>k</i> is a constant, explain why there are no even powers of <i>x</i> in this expansion.	[3]
	(b) Given that the coefficient of the third term is thrice the coefficient of the second term, find the value of k .	[3]
7	[Circle]	
	The equation of the tangent to a circle at the point $A(8,9)$ is given by $4y + 3x = 60$. The line $y = 4x - 7$ passes through the centre, <i>P</i> , of the circle.	
	(a) Find the coordinates of <i>P</i>.(b) Find the equation of the circle.The tangent to the circle at <i>A</i> meets the <i>y</i>-axis at point <i>B</i>.	[2] [2]
	(c) Find the equation of another circle with BP as diameter.	[2]
	A cup of hot coffee was put on the table to cool at 3 pm. The temperature of the coffee, $T \circ C$, after x minutes, is given $T = 20 + ae^{-kx}$ where a and k are constants. The table shows that values of T and x taken at different timings. It is believed that an error was made in recording one of the values of T. $ \frac{x 5 10 15 20}{T 68.5 60.1 52.6 37.1} $ (a) Using a scale of 4 cm to 5 minutes for x and 4 cm to 1 unit for $\ln(T - 20)$, plot $\ln(T - 20)$ against x and draw a straight line graph. (b) Determine which value of T, in the table above, is the incorrect recording and use your graph to estimate its correct value. Use your graph to estimate, (c) the value of a and the value of k.	[2]
	(d) the time when the temperature of the coffee is $50^{\circ}C$.	[2] [1]
	(e) Explain why the temperature of the coffee is always more than $20^{\circ}C$.	
9	(e) Explain why the temperature of the coffee is always more than 20° <i>C</i> . [Trigonometry]	[1]
9	(e) Explain why the temperature of the coffee is always more than $20^{\circ}C$. [Trigonometry] (a) (i) Prove that $\frac{\sin x}{\sec x+1} + \frac{\sin x}{\sec x-1} = 2 \cot x$.	[1]
9	(e) Explain why the temperature of the coffee is always more than 20° <i>C</i> . [Trigonometry]	[1] [1]

[2]

[2]

[3]

16 [Integration – Kinematics] A particle starts from rest, travels in a straight line so that t is the time in seconds after passing a fixed point O. Its velocity, v m/s, is given by v = 6t - 2t². The particle comes to instantaneous rest at A. (i) Find the acceleration of the particle at A.

(ii) Find the maximum velocity of the particle.

(iii)Find the total distance travelled by the particle during the first 5 seconds.

Answer:

1	(a) $\therefore k > 4$ $(k-3)x^2 + 4x + k > 0$ for all values of x Discriminant < 0 16 - 4k(k-3) < 0 $4k^2 - 12k - 16 > 0$ $k^2 - 3k - 4 > 0$ (k-4)(k+1) > 0 k > 4 or $k < -1Since k - 3 > 0, k > 3\therefore k > 4(b) shown6x^2 + 4(m-1) = 2(x + m)$
	$6x^2 - 2x + 2m - 4 = 0$ Discriminant = 100 - 48m
	Since $m \le 2\frac{1}{12}$ $25 - 12m \ge 0$ $100 - 48m \ge 0$
	Since discriminant ≥ 0 , $6x^2 + 4(m-1) = 2(x+m)$ has real roots if $m \le 2\frac{1}{12}$
2	$(i) 31 + 8\sqrt{15}$ $\left(\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\right)^2$ $= \frac{5 + 2\sqrt{15 + 3}}{5 - 2\sqrt{15} + 3}$ $= \frac{8 + 2\sqrt{15}}{8 - 2\sqrt{15}} \times \frac{8 + 2\sqrt{15}}{8 + 2\sqrt{15}}$ $= \frac{64 + 32\sqrt{15 + 60}}{64 - 60}$ $= \frac{124 + 32\sqrt{15}}{4} = 31 + 8\sqrt{15}$

3 (i) Sub $n = 0, T_0 = 45^{\circ}$ (ii) n = 1.46 $37 = 33 + 12e^{\frac{3}{4}n}$ *n* = 1.46 (iii) n = 3.46 $\frac{dT}{dn} = 12\left(-\frac{3}{4}\right)e^{-\frac{3}{4}} -0.67 = -9e^{-\frac{3}{4}n}$ n = 3.46(iv) shown $12e^{-\frac{3}{4}n} > 0$ $33 + 12e^{-\frac{3}{4}n} > 33$ T > 33°C (shown) т 45 $T = 33 + 12e^{-\frac{3}{4}n}$ 33 ____ 🕈 n 0

🕽 🔎 Paradigm

I	4	(a)
		y = 4 or $y = 12$
		$\log_4(2y) = \log_{16}(y-3) + 3\log_93$
		$\log_{4}(2y) = \frac{\log_{4}(y-3)}{\log_{4}16} + 3\frac{\log_{3}3}{\log_{3}9}$ $\log_{4}(2y) = \frac{\log_{4}(y-3)}{2} + \frac{3}{2}$
		$\log_4(-y) = \log_4 16 = \log_3 9$
		$\log_4(2y) = \frac{\log_4(y-3)}{2} + \frac{3}{2}$
		$2\log_4(2y) = \log_4(y-3) + 3$
		$\log_4(2y)^2 - \log_4(y - 3) = 3$
		$\log_4 \frac{(2y)^2}{y-3} = 3$
		5
		$\therefore \frac{4y^2}{y-3} = 4^3$
		$4y^2 = 64(y-3)$
		$y^{2} = 16(y - 3)$ $y^{2} - 16y + 48 = 0$
		$(y-4)(y-12) = 0$ $\therefore y = 4 \text{ or } y = 12$
		(b) $\sqrt{27} \ or \ \sqrt{3}$
		$3\log_x 3 = 8 - 4\log_3 x$
		3
		$\frac{3}{\log_3 x} = 8 - 4\log_3 x$
		Let $y = \log_3 x$
		3
		$\frac{3}{y} = 8 - 4y$
		$3 = 8y - 4y^2$
		$4y^2 - 8y + 3 = 0$
		(2y - 3)(2y - 1) = 0
		$y = 1.5 \ or \ 0.5$
		$x = 3^{1.5} \text{ or } 3^{0.5}$
		$=\sqrt{27} \text{ or } \sqrt{3}$

5	(a) $(3a-5b)(9a^2+15ab+25b^2)$ $27a^3-125b^3$ $= (3a)^3-(5b)^3$ $= (3a-5b)[(3a)^2+(3a)(5b)+(5b)^2]$ $= (3a-5b)[9a^2+15ab+25^2]$
	(bi) shown Let $f(x) = 3x^3 + 3x^2 - 11x - 6$ $f(-a) = 3(-a)^3 + 3(-a)^2 - 11(-a) - 6$ $= -3a^3 + 3a^2 + 11a - 6$ $f(a) = 3(a)^3 + 3(a)^2 - 11(a) - 6$ [M1] $-3a^3 + 3a^2 + 11a - 6 = \frac{1}{2}(3a^3 + 3a^2 - 11a - 6)$ $0 = 9a^3 - 3a^2 - 33a + 6$ $0 = 3a^3 - a^2 - 11a + 2$ [M1] $3a^3 - a^2 = 11a - 2$
	(bii) $x = 2, 0.18 \text{ or } -1.85$ $3a^3 - a^2 - 11a + 2 = 0$ a - 2 is a factor. $(a - 2)(3a^2 + pa - 1) = 0$ -2p - 1 = -11 2p = 10 p = 5 $(a - 2)(3a^2 + 5a - 1) = 0$
	$a-2 = 0 3a^2 + 5a - 1 a = 2 a = \frac{-5 \pm \sqrt{(5)^2 - 4(3)(-1)}}{2(3)} = 0.18 \text{ or } -1.85 (2dp)$
	$(c) \frac{4x^3 + x^2 + 6}{(x-2)(x^2+2)} = 4 + \frac{7}{x-2} + \frac{2x-4}{x^2+2}$ $\frac{4x^3 + x^2 + 6}{(x-2)(x^2+2)} = 4 + \frac{A}{x-2} + \frac{Bx+C}{x^2+2}$
	Multiplying by $(x - 2)(x^2 + 2)$, we obtain $4x^3 + x^2 + 6 = 4(x - 2)(x^2 + 2) + A(x^2 + 2) + (Bx + C)(x - 2)$ Sub $x = 2$: $4 \times 8 + 4 + 6 = A(4 + 2)$ $42 = 6A \Rightarrow A = 7$ Sub $x = 0$: $6 = -16 + 2(7) + C(-2)$ $-2C = 8 \Rightarrow C = -4$ Compare x^2 : $1 = -8 + 7 + B \Rightarrow B = 2$
	$\therefore \frac{4x^3 + x^2 + 6}{(x-2)(x^2+2)} = 4 + \frac{7}{x-2} + \frac{2x-4}{x^2+2}$

6	(a) Since the power of x is $7 - 4r = 2(3 - 2r) + 1$ will always be odd, there are no
Ŭ	even powers of x for this expansion.
	$\left(kx - \frac{1}{r^3}\right)^7 = \binom{7}{r} (kx)^{7-r} \left(-\frac{1}{r^3}\right)^r + \dots$
	$\left(kx - \frac{1}{x^3}\right)^7 = \binom{7}{r} (k)^{7-r} (-1)^r x^{7-r} (x^{-3})^r + \dots$
	$\left(kx - \frac{1}{x^3}\right)^7 = \binom{7}{r} (k)^{7-r} (-1)^r x^{7-r-3r} + \dots$
	$\left(kx - \frac{1}{x^3}\right)^7 = \binom{7}{r} (k)^{7-r} (-1)^r x^{7-4r} + \dots$
	Since the power of x is $7 - 4r = 2(3 - 2r) + 1$ will always be odd, there are no even
	powers of x for this expansion. (b) $k = -1$
	$\binom{7}{2}(k)^{7-2}(-1)^2 = 3\binom{7}{1}(k)^{7-1}(-1)^1$
	$(2)^{(1)}(1)^{(1)}($
	k = -1
7	(a) $P(2, 1)$ 4y + 3x = 60
	$y = -\frac{3}{4}x + 15$
	$m_{\text{tangent}=-\frac{3}{4}}$
	$m_{\text{normal}=\frac{4}{2}}$
	$y - 9 = \frac{4}{2}(x - 8)$
	The equation of the normal is $y = \frac{4}{3}x - \frac{5}{3}$ (1)
	y = 4x - 7(2)
	$(1) = (2) : \frac{4}{3}x - \frac{5}{3} = 4x - 7$
	x = 2
	y = 1 P(2, 1)
	(b) Equation of circle is $(x - 2)^2 + (y - 1)^2 = 100$. $(x - 2)^2 + (y - 1)^2 = r^2$
	(x - 2) + (y - 1) = 7 Sub (8,9): $r^2 = 100$
	Equation of circle is $(x - 2)^2 + (y - 1)^2 = 100$.
	(c) Equation of circle is $(x - 1)^2 + (y - 8)^2 = 50$
	When $x = 0, 4y + 3(0) = 60$
	y = 15 B(0, 15)
	Centre of circle = $\left(\frac{2+0}{2}, \frac{1+15}{2}\right)$
	=(1,8)
	$BP = \sqrt{(2-0)^2 + (1-15)^2}$
	$=10\sqrt{2}$
	Radius = $5\sqrt{2}$
	$(x-1)^2 + (y-8)^2 = (5\sqrt{2})^2$ Equation of circle is $(x-1)^2 + (y-8)^2 = 50$

🕽 🗲 Paradigm

🕽 🗲 Paradigm

_	
9	(a)(i) Proved $LHS = \frac{\sin x}{\sec x + 1} + \frac{\sin x}{\sec x - 1}$ $= \frac{\sin x(\sec x - 1) + \sin x(\sec x + 1)}{\sec^2 x - 1}$ $= \frac{\tan x - \sin x + \tan x + \sin x}{\sec^2 x - 1}$ $= \frac{2 \tan x}{\sec^2 x - 1}$ $= \frac{2 \tan x}{\tan^2 x}$ $= 2 \cot x$ $= RHS (proved)$ (ii) $x = \frac{\pi}{3}, \frac{2\pi}{3}$ $\frac{\sin x}{\sec x + 1} + \frac{\sin x}{\sec x - 1} = \frac{2 \tan x}{3}$ $2 \cot x = \frac{2 \tan x}{3}$ $\tan^2 x = 3$ $\tan x = \pm \sqrt{3}$ Basic angle $= \frac{\pi}{3}$ For $0 \le x \le 4$, $x = \frac{\pi}{3}, \frac{2\pi}{3}$ (b) $\sqrt{6} - \sqrt{3}$ $1^2 + x^2 = (\sqrt{3})^2$ $x = \sqrt{2}$ $\cos \theta = -\frac{\sqrt{2}}{\sqrt{3}}$ $= \frac{\sqrt{3}}{1 + \sqrt{2}} \times \frac{1 - \sqrt{2}}{1 - \sqrt{2}}$
	$\tan^2 x = 3$
	Basic angle $=\frac{\pi}{3}$ For $0 \le x \le 4$,
	$1^{2} + x^{2} = \left(\sqrt{3}\right)^{2}$ $x = \sqrt{2}$
	$\frac{1}{\sin\theta - \cos\theta} = \frac{1}{\frac{1}{\sqrt{3}} + \frac{\sqrt{2}}{\sqrt{3}}}$
	$= \frac{\sqrt{3} - \sqrt{6}}{-1} = \sqrt{6} - \sqrt{3}$

10	(i) shown
	$\cos \theta = \frac{CD}{100} \Longrightarrow CD = 100 \cos \theta$
	$\sin \theta = \frac{AE}{30} \Rightarrow AE = 30 \sin \theta$
	$OC = CD + AE = 100\cos\theta + 30\sin\theta$
	(ii) $\therefore OC = 10\sqrt{109}\cos(\theta - 16.7^{\circ})$ $R = \sqrt{100^2 + 30^2}$
	$ \begin{array}{l} R = \sqrt{100^2 + 30^2} \\ = 100\sqrt{109} \end{array} $
	$\alpha = \tan^{-1}\left(\frac{30}{100}\right)$
	$a = \tan^{-1}(\frac{1}{100})$ = 16.7°(1 <i>dp</i>)
	$= 10.7 (1ap) \\ \therefore 0C = 10\sqrt{109}\cos(\theta - 16.7^{\circ})$
	(iii)
	$OC_{max} = 10\sqrt{109}$
	$\theta = 16.7^{\circ}$
	(iv) $\theta = 56.7^{\circ}$
	$80 = 10\sqrt{109}\cos(\theta - 16.7^{\circ})$
	$\cos(\theta - 16.7^{\circ}) = \frac{8}{\sqrt{109}}$
	$\theta - 16.7^\circ = 39.98^\circ(\theta \text{ is acute})$
	$\theta = 56.7^{\circ}$
┝───	
11	(a) $a = 2, b = -2$
11	(a) $a = 2, b = -2$ Equation of line: $y = \frac{1}{4}x + 5$
11	Equation of line: $y = \frac{1}{4}x + 5$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1)
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1) Sub (1, -1) into $y = \frac{a}{x} + bx - 1$ a + b = 0 Eqn (2) Solving: $a = 2, b = -2$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1) Sub (1, -1) into $y = \frac{a}{x} + bx - 1$ a + b = 0 Eqn (2)
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1) Sub (1, -1) into $y = \frac{a}{x} + bx - 1$ a + b = 0 Eqn (2) Solving: $a = 2, b = -2$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1) Sub (1, -1) into $y = \frac{a}{x} + bx - 1$ a + b = 0 Eqn (2) Solving: $a = 2, b = -2$ (b) Coordinates of P is $\left(-\frac{8}{9}, -\frac{53}{36}\right)$ $y = \frac{2}{x} - 2x - 1$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1) Sub (1, -1) into $y = \frac{a}{x} + bx - 1$ a + b = 0 Eqn (2) Solving: $a = 2, b = -2$ (b) Coordinates of P is $\left(-\frac{8}{9}, -\frac{53}{36}\right)$ $y = \frac{2}{x} - 2x - 1$ Equation of normal is: $y + 1 = \frac{1}{4}(x - 1)$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1) Sub (1, -1) into $y = \frac{a}{x} + bx - 1$ a + b = 0 Eqn (2) Solving: $a = 2, b = -2$ (b) Coordinates of P is $\left(-\frac{8}{9}, -\frac{53}{36}\right)$ $y = \frac{2}{x} - 2x - 1$ Equation of normal is: $y + 1 = \frac{1}{4}(x - 1)$ $y = \frac{1}{4}x - \frac{5}{4}$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1) Sub (1, -1) into $y = \frac{a}{x} + bx - 1$ a + b = 0 Eqn (2) Solving: $a = 2, b = -2$ (b) Coordinates of P is $\left(-\frac{8}{9}, -\frac{53}{36}\right)$ $y = \frac{2}{x} - 2x - 1$ Equation of normal is: $y + 1 = \frac{1}{4}(x - 1)$ $y = \frac{1}{4}x - \frac{5}{4}$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1) Sub (1, -1) into $y = \frac{a}{x} + bx - 1$ a + b = 0 Eqn (2) Solving: $a = 2, b = -2$ (b) Coordinates of P is $\left(-\frac{8}{9}, -\frac{53}{36}\right)$ $y = \frac{2}{x} - 2x - 1$ Equation of normal is: $y + 1 = \frac{1}{4}(x - 1)$ $y = \frac{1}{4}x - \frac{5}{4}$ $\frac{2}{x} - 2x - 1 = \frac{1}{4}x - \frac{5}{4}$ $8 - 8x^2 - 4x = x^2 - 5x$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1) Sub (1, -1) into $y = \frac{a}{x} + bx - 1$ a + b = 0 Eqn (2) Solving: $a = 2, b = -2$ (b) Coordinates of P is $\left(-\frac{8}{9}, -\frac{53}{36}\right)$ $y = \frac{2}{x} - 2x - 1$ Equation of normal is: $y + 1 = \frac{1}{4}(x - 1)$ $y = \frac{1}{4}x - \frac{5}{4}$ $\frac{2}{x} - 2x - 1 = \frac{1}{4}x - \frac{5}{4}$ $8 - 8x^2 - 4x = x^2 - 5x$ $9x^2 - x - 8 = 0$ $(9x + 8)(x - 1) = 0$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1) Sub (1, -1) into $y = \frac{a}{x} + bx - 1$ a + b = 0 Eqn (2) Solving: $a = 2, b = -2$ (b) Coordinates of P is $\left(-\frac{8}{9}, -\frac{53}{36}\right)$ $y = \frac{2}{x} - 2x - 1$ Equation of normal is: $y + 1 = \frac{1}{4}(x - 1)$ $y = \frac{1}{4}x - \frac{5}{4}$ $\frac{2}{x} - 2x - 1 = \frac{1}{4}x - \frac{5}{4}$ $\frac{8}{8} - 8x^2 - 4x = x^2 - 5x$ $9x^2 - x - 8 = 0$ $(9x + 8)(x - 1) = 0$ $x = -\frac{8}{9}$ or $x = 1$ $y = 2\left(-\frac{9}{8}\right) - 2\left(-\frac{8}{9}\right) - 1$ $= -\frac{53}{56}$
11	Equation of line: $y = \frac{1}{4}x + 5$ At $x = 1$, gradient of normal $= \frac{1}{4}$ Gradient of tangent $= -4$ $\frac{dy}{dx} = -\frac{a}{x^2} + b$ -a + b = -4 Eqn (1) Sub (1, -1) into $y = \frac{a}{x} + bx - 1$ a + b = 0 Eqn (2) Solving: $a = 2, b = -2$ (b) Coordinates of P is $\left(-\frac{8}{9}, -\frac{53}{36}\right)$ $y = \frac{2}{x} - 2x - 1$ Equation of normal is: $y + 1 = \frac{1}{4}(x - 1)$ $y = \frac{1}{4}x - \frac{5}{4}$ $\frac{2}{x} - 2x - 1 = \frac{1}{4}x - \frac{5}{4}$ $8 - 8x^2 - 4x = x^2 - 5x$ $9x^2 - x - 8 = 0$ $(9x + 8)(x - 1) = 0$

12	(a) $\frac{dy}{dt} = \frac{2}{(t-t)^2}$
	(a) $\frac{dy}{dx} = \frac{2}{x(9x+4)}$ $y = \ln \sqrt{\frac{5x}{9x+4}}$
	$= \frac{1}{2} \left[\ln 5x - \ln(9x + 4) \right]$
	$ \frac{dy}{dx} = \frac{1}{2} \left[\frac{5}{5x} - \frac{9}{9x+4} \right] $ = $\frac{1}{2} \left[\frac{9x+4}{x(9x+4)} - \frac{9x}{x(9x+4)} \right] $
	$= \frac{1}{2} \left[\frac{3x+1}{x(9x+4)} - \frac{3x}{x(9x+4)} \right]$
	$=\frac{1}{2}\left[\frac{4}{x(9x+4)}\right]$
	$=\frac{2}{x(9x+4)}$
	(b) x is increasing at a rate of $\frac{3}{4}$ units per second.
	Let $y = 0$, $\ln \sqrt{\frac{5x}{9x+4}} = 0$
	$\frac{1}{2}[\ln 5x - \ln(9x + 4)] = 0$
	$\ln 5x - \ln(9x + 4) = 0$ $\ln 5x = \ln(9x + 4)$
	5x = 9x + 4
	$\begin{array}{c} x = -1 \\ \frac{dy}{dy} - \frac{dy}{dx} \times \frac{dx}{dx} \end{array}$
	$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$ $0.3 = \frac{2}{x(9x+4)} \times \frac{dx}{dt}$
	When $x = -1$, $\frac{dx}{dt} = 0.3 \div \frac{2}{(-1)(-9+4)}$
	$ \begin{array}{c} dt \\ = \frac{3}{4} \end{array} $
	x is increasing at a rate of $\frac{3}{4}$ units per second.

14	$(a)(i) - 2 \tan 2x$
	$y = \ln(\cos 2x)$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos 2x} - \sin 2x \ 2$
	$= -2 \tan 2x$
	(ii) $x \sec^2 2x + \frac{1}{2} \tan 2x$
	$y = \frac{x}{2} \tan 2x$
	$\frac{dy}{dx} = \frac{x}{2} \sec^2 2x \ 2 + \tan 2x \frac{1}{2}$
	$\frac{1}{dx} = \frac{1}{2} \sec^2 2x^2 + \tan^2 2x^2$
	$= x \sec^2 2x + \frac{1}{2} \tan 2x$
	2
	(b) $\int 2x \sec^2 2x dx = x \tan 2x + \frac{1}{2} \ln \cos 2x + c$
	$\int x \sec^2 2x + \frac{1}{2} \tan 2x dx = \frac{x}{2} \tan 2x$
	$\int x \sec^2 2x dx = \frac{x}{2} \tan 2x - \frac{1}{2} \int \tan 2x dx$
	$2\int x \sec^2 2x dx = x \tan 2x - \int \tan 2x dx$
	$\int 2x \sec^2 2x dx = x \tan 2x + \frac{1}{2} \ln \cos 2x + c$
15	(a) $x = 2, y = 2$
	$x = -x^2 + 3x$
	$x^2 - 2x = 0$
	$\begin{array}{l} x & 2x \\ x(x-2) = 0 \end{array}$
	x(x - 2) = 0 x = 0 or x = 2
	x = 0.01 x = 2
	When $x = 2, y = 2$ Therefore M(2, 2)
	(b) $1\frac{2}{3}$ sq units
	5
	Area $P = \int_0^2 (-x^2 + 2x) dx$ [M1]
	$\int_{-\infty}^{2} (-u^2 + 2u) du$
	$= \int_{0}^{\infty} (-x^2 + 2x) dx$
	$=\left[-\frac{x^3}{3}+\frac{2x^2}{2}\right]_0^2$ [M1]
	0
	$= 4 - 2\frac{2}{3} = 1\frac{1}{3}units^{2} $ [A1]
	(c) $10\frac{2}{3}$ sq units
	$0 = y^2 - 4y$
	0 = y(y - 4)
1	y = 0 or $y = 4$ [M1]
	$\left Area P = \left \int_{0}^{2} (y^{2} - 4y) dy \right = \left \left[\frac{y^{3}}{3} - \frac{4y^{2}}{2} \right]_{0}^{4} \right [M1] = 10 \frac{2}{3} units^{2} [A1]$
	$ Area P = J_0(y - 4y)ay = [\frac{3}{3} - \frac{3}{2}]_0 $ [MI]=10 $\frac{3}{3}$ and [AI]
1	
1	
1	

16 (i) at A, v = 0 $\Rightarrow 2t(3-t) = 0$ t = 0 or t = 3 $a = \frac{dv}{dt}$ a = 6 - 4tat A, acceleration = 6 - 4(3) = -6 ms (ii) For max velocity, $\frac{dv}{dt} = 0$ 6 - 4t = 0 $t = \frac{3}{2}$ $\therefore \text{max velocity} = 6\left(\frac{3}{2}\right) - 2\left(\frac{3}{2}\right)^2 = 4\frac{1}{2}m/s$ (iii) $v = 6t - 2t^2$ $s = \int v dt$ $=\int 6t - 2t^2 dt$ $= 3t^2 - \frac{2}{3}t^3 + c$ when t = 0, s = 0 ⇒ c = 0 ∴ s = $3t^2 - \frac{2}{3}t^3$ when t = 3, $s = 3(3)^2 - \frac{2}{3}(3)^3 = 9$ when t = 5, $s = 3(5)^2 - \frac{2}{3}(5)^3 = -8\frac{1}{3}$